20 research outputs found

    The Nigerian Twin and Sibling Registry:An update

    Get PDF
    Here we provide an update of the 2013 report on the Nigerian Twin and Sibling Registry (NTSR). The major aim of the NTSR is to understand genetic and environmental influences and their interplay in psychological and mental health development in Nigerian children and adolescents. Africans have the highest twin birth rates among all human populations, and Nigeria is the most populous country in Africa. Due to its combination of large population and high twin birth rates, Nigeria has one of the largest twin populations in the world. In this article, we provide current updates on the NTSR samples recruited, recruitment procedures, zygosity assessment and findings emerging from the NTSR

    Large-scale association analyses identify host factors influencing human gut microbiome composition

    Get PDF
    To study the effect of host genetics on gut microbiome composition, the MiBioGen consortium curated and analyzed genome-wide genotypes and 16S fecal microbiome data from 18,340 individuals (24 cohorts). Microbial composition showed high variability across cohorts: only 9 of 410 genera were detected in more than 95% of samples. A genome-wide association study of host genetic variation regarding microbial taxa identified 31 loci affecting the microbiome at a genome-wide significant (P <5 x 10(-8)) threshold. One locus, the lactase (LCT) gene locus, reached study-wide significance (genome-wide association study signal: P = 1.28 x 10(-20)), and it showed an age-dependent association with Bifidobacterium abundance. Other associations were suggestive (1.95 x 10(-10) <P <5 x 10(-8)) but enriched for taxa showing high heritability and for genes expressed in the intestine and brain. A phenome-wide association study and Mendelian randomization identified enrichment of microbiome trait loci in the metabolic, nutrition and environment domains and suggested the microbiome might have causal effects in ulcerative colitis and rheumatoid arthritis

    GENETICALLY INFORMATIVE DESIGNS FOR THE STUDY OF HEALTH ASSOCIATED BIOMARKERS

    Get PDF
    Genetically informative study designs have long been of great importance for helping to determine the role the environment and genetic susceptibility play in several human phenotypes. Of such designs, one of the most well-known is the classical twin design, including both monozygotic (MZ) and dizygotic (DZ) participants. In addition to the comparison of MZ and DZ twin pairs, studies focused on MZ twin pairs discordant for a specific phenotype allow for researchers to better understand how environmental influences impact a trait while controlling for the host genomic profile. Beyond the use of twin derived samples, with information on the genomic content of unrelated individuals, it is possible to create genetically informative designs aimed at understanding many biological phenomena

    Genetic Ancestry Estimates within Dutch Family Units and Across Genotyping Arrays:Insights from Empirical Analysis Using Two Estimation Methods

    No full text
    Accurate inference of genetic ancestry is crucial for population-based association studies, accounting for population heterogeneity and structure. This study analyzes genome-wide SNP data from the Netherlands Twin Register to compare genetic ancestry estimates. The focus is on the comparison of ancestry estimates between family members and individuals genotyped on multiple arrays (Affymetrix 6.0, Affymetrix Axiom, and Illumina GSA). Two conventional methods, principal component analysis and ADMIXTURE, were implemented to estimate ancestry, each serving its specific purpose, rather than for direct comparison. The results reveal that as the degree of genetic relatedness decreases, the Euclidean distances of genetic ancestry estimates between family members significantly increase (empirical p &lt; 0.001), regardless of the estimation method and genotyping array. Ancestry estimates among individuals genotyped on multiple arrays also show statistically significant differences (empirical p &lt; 0.001). Additionally, this study investigates the relationship between the ancestry estimates of non-identical twin offspring with ancestrally diverse parents and those with ancestrally similar parents. The results indicate a statistically significant weak correlation between the variation in ancestry estimates among offspring and differences in ancestry estimates among parents (Spearman’s rho: 0.07, p = 0.005). This study highlights the utility of current methods in inferring genetic ancestry, emphasizing the importance of reference population composition in determining ancestry estimates.</p

    Cohabitation is associated with a greater resemblance in gut microbiota which can impact cardiometabolic and inflammatory risk

    No full text
    BACKGROUND: The gut microbiota composition is known to be influenced by a myriad of factors including the host genetic profile and a number of environmental influences. Here, we focus on the environmental influence of cohabitation on the gut microbiota as well as whether these environmentally influenced microorganisms are associated with cardiometabolic and inflammatory burden. We perform this by investigating the gut microbiota composition of various groups of related individuals including cohabitating monozygotic (MZ) twin pairs, non-cohabitating MZ twin pairs and spouse pairs. RESULTS: A stronger correlation between alpha diversity was found in cohabitating MZ twins (45 pairs, r = 0.64, p = 2.21 × 10- 06) than in non-cohabitating MZ twin pairs (121 pairs, r = 0.42, p = 1.35 × 10- 06). Although the correlation of alpha diversity did not attain significance between spouse pairs (42 pairs, r = 0.23, p = 0.15), the correlation was still higher than those in the 209 unrelated pairs (r = - 0.015, p = 0.832). Bray-Curtis (BC) dissimilarity metrics showed cohabitating MZ twin pairs had the most similar gut microbiota communities which were more similar than the BC values of non-cohabitating MZ twins (empirical p-value = 0.0103), cohabitating spouses (empirical p-value = 0.0194), and pairs of unrelated non-cohabitating individuals (empirical p-value< 0.00001). There was also a significant difference between the BC measures from the spouse pairs and those from the unrelated non-cohabitating individuals (empirical p-value< 0.00001). Intraclass correlation coefficients were calculated between the various groups of interest and the results indicate the presence of OTUs with an environmental influence and one OTU that appeared to demonstrate genetic influences. One of the OTUs (Otu0190) was observed to have a significant association with both the cardiometabolic and inflammatory burden scores (p's < 0.05). CONCLUSIONS: Through the comparison of the microbiota contents of MZ twins with varying cohabitation status and spousal pairs, we showed evidence of environmentally influenced OTUs, one of which had a significant association with cardiometabolic and inflammatory burden scores

    Implementation and implications for polygenic risk scores in healthcare

    No full text
    Increasing amounts of genetic data have led to the development of polygenic risk scores (PRSs) for a variety of diseases. These scores, built from the summary statistics of genome-wide association studies (GWASs), are able to stratify individuals based on their genetic risk of developing various common diseases and could potentially be used to optimize the use of screening and preventative treatments and improve personalized care for patients. Many challenges are yet to be overcome, including PRS validation, healthcare professional and patient education, and healthcare systems integration. Ethical challenges are also present in how this information is used and the current lack of diverse populations with PRSs available. In this review, we discuss the topics above and cover the nature of PRSs, visualization schemes, and how PRSs can be improved. With these tools on the horizon for multiple diseases, scientists, clinicians, health systems, regulatory bodies, and the public should discuss the uses, benefits, and potential risks of PRSs

    Genome-Wide DNA Methylation Profiles in Whole-Blood and Buccal Samples—Cross-Sectional, Longitudinal, and across Platforms

    No full text
    The field of DNA methylation research is rapidly evolving, focusing on disease and phenotype changes over time using methylation measurements from diverse tissue sources and multiple array platforms. Consequently, identifying the extent of longitudinal, inter-tissue, and inter-platform variation in DNA methylation is crucial for future advancement. DNA methylation was measured in 375 individuals, with 197 of those having 2 blood sample measurements ~10 years apart. Whole-blood samples were measured on Illumina Infinium 450K and EPIC methylation arrays, and buccal samples from a subset of 58 participants were measured on EPIC array. The data were analyzed with the aims to examine the correlation between methylation levels in longitudinal blood samples in 197 individuals, examine the correlation between methylation levels in the blood and buccal samples in 58 individuals, and examine the correlation between blood methylation profiles assessed on the EPIC and 450K arrays in 83 individuals. We identified 136,833, 7674, and 96,891 CpGs significantly and strongly correlated (&gt;0.50) longitudinally, across blood and buccal samples as well as array platforms, respectively. A total of 3674 of these CpGs were shared across all three sets. Analysis of these shared CpGs identified previously found associations with aging, ancestry, and 7016 mQTLs as well.</p

    Genetic Similarity Assessment of Twin-Family Populations by Custom-Designed Genotyping Array

    Get PDF
    Twin registries often take part in large collaborative projects and are major contributors to genome-wide association (GWA) meta-analysis studies. In this article, we describe genotyping of twin-family populations from Australia, the Midwestern USA (Avera Twin Register), the Netherlands (Netherlands Twin Register), as well as a sample of mothers of twins from Nigeria to assess the extent, if any, of genetic differences between them. Genotyping in all cohorts was done using a custom-designed Illumina Global Screening Array (GSA), optimized to improve imputation quality for population-specific GWA studies. We investigated the degree of genetic similarity between the populations using several measures of population variation with genotype data generated from the GSA. Visualization of principal component analysis (PCA) revealed that the Australian, Dutch and Midwestern American populations exhibit negligible interpopulation stratification when compared to each other, to a reference European population and to globally distant populations. Estimations of fixation indices (FST values) between the Australian, Midwestern American and Netherlands populations suggest minimal genetic differentiation compared to the estimates between each population and a genetically distinct cohort (i.e., samples from Nigeria genotyped on GSA). Thus, results from this study demonstrate that genotype data from the Australian, Dutch and Midwestern American twin-family populations can be reasonably combined for joint-genetic analysis

    Metataxonomic Analysis of Individuals at BMI Extremes and Monozygotic Twins Discordant for BMI

    No full text
    Objective: The human gut microbiota has been demonstrated to be associated with a number of host phenotypes, including obesity and a number of obesity-Associated phenotypes. This study is aimed at further understanding and describing the relationship between the gut microbiota and obesity-Associated measurements obtained from human participants. Subjects/Methods: Here, we utilize genetically informative study designs, including a four-corners design (extremes of genetic risk for BMI and of observed BMI; N = 50) and the BMI monozygotic (MZ) discordant twin pair design (N = 30), in order to help delineate the role of host genetics and the gut microbiota in the development of obesity. Results: Our results highlight a negative association between BMI and alpha diversity of the gut microbiota. The low genetic risk/high BMI group of individuals had a lower gut microbiota alpha diversity when compared to the other three groups. Although the difference in alpha diversity between the lean and heavy groups of the BMI-discordant MZ twin design did not achieve significance, this difference was observed to be in the expected direction, with the heavier participants having a lower average alpha diversity. We have also identified nine OTUs observed to be associated with either a leaner or heavier phenotype, with enrichment for OTUs classified to the Ruminococcaceae and Oxalobacteraceae taxonomic families. Conclusion: Our study presents evidence of a relationship between BMI and alpha diversity of the gut microbiota. In addition to these findings, a number of OTUs were found to be significantly associated with host BMI. These findings may highlight separate subtypes of obesity, one driven by genetic factors, the other more heavily influenced by environmental factors

    Pathogenesis of Tobacco-Associated Lung Adenocarcinoma Is Closely Coupled with Changes in the Gut and Lung Microbiomes

    No full text
    Microbial dysbiosis has emerged as a modulator of oncogenesis and response to therapy, particularly in lung cancer. Here, we investigate the evolution of the gut and lung microbiomes following exposure to a tobacco carcinogen. We performed 16S rRNA-Seq of fecal and lung samples collected prior to and at several timepoints following (nicotine-specific nitrosamine ketone/NNK) exposure in Gprc5a−/− mice that were previously shown to exhibit accelerated lung adenocarcinoma (LUAD) development following NNK exposure. We found significant progressive changes in human-relevant gut and lung microbiome members (e.g., Odoribacter, Alistipes, Akkermansia, and Ruminococus) that are closely associated with the phenotypic development of LUAD and immunotherapeutic response in human lung cancer patients. These changes were associated with decreased short-chain fatty acids (propionic acid and butyric acid) following exposure to NNK. We next sought to study the impact of Lcn2 expression, a bacterial growth inhibitor, given our previous findings on its protective role in LUAD development. Indeed, we found that the loss of Lcn2 was associated with widespread gut and lung microbiome changes at all timepoints, distinct from those observed in our Gprc5a−/− mouse model, including a decrease in abundance and diversity. Our overall findings apprise novel cues implicating microbial phenotypes in the development of tobacco-associated LUAD
    corecore