5,314 research outputs found

    A massive, distant proto-cluster at z=2.47 caught in a phase of rapid formation?

    Get PDF
    Numerical simulations of cosmological structure formation show that the Universe's most massive clusters, and the galaxies living in those clusters, assemble rapidly at early times (2.5 < z < 4). While more than twenty proto-clusters have been observed at z > 2 based on associations of 5-40 galaxies around rare sources, the observational evidence for rapid cluster formation is weak. Here we report observations of an asymmetric, filamentary structure at z = 2.47 containing seven starbursting, submillimeter-luminous galaxies and five additional AGN within a comoving volume of 15000 Mpc3^{3}. As the expected lifetime of both the luminous AGN and starburst phase of a galaxy is ~100 Myr, we conclude that these sources were likely triggered in rapid succession by environmental factors, or, alternatively, the duration of these cosmologically rare phenomena is much longer than prior direct measurements suggest. The stellar mass already built up in the structure is āˆ¼1012MāŠ™\sim10^{12}M_{\odot} and we estimate that the cluster mass will exceed that of the Coma supercluster at zāˆ¼0z \sim 0. The filamentary structure is in line with hierarchical growth simulations which predict that the peak of cluster activity occurs rapidly at z > 2.Comment: 7 pages, 3 figures, 2 tables, accepted in ApJL (small revisions from previous version

    Optical, near-IR and sub-mm IFU Observations of the nearby dual AGN Mrk 463

    Full text link
    We present optical and near-IR Integral Field Unit (IFU) and ALMA band 6 observations of the nearby dual Active Galactic Nuclei (AGN) Mrk 463. At a distance of 210 Mpc, and a nuclear separation of āˆ¼\sim4 kpc, Mrk 463 is an excellent laboratory to study the gas dynamics, star formation processes and supermassive black hole (SMBH) accretion in a late-stage gas-rich major galaxy merger. The IFU observations reveal a complex morphology, including tidal tails, star-forming clumps, and emission line regions. The optical data, which map the full extent of the merger, show evidence for a biconical outflow and material outflowing at >>600 km sāˆ’1^{-1}, both associated with the Mrk 463E nucleus, together with large scale gradients likely related to the ongoing galaxy merger. We further find an emission line region āˆ¼\sim11 kpc south of Mrk 463E that is consistent with being photoionized by an AGN. Compared to the current AGN luminosity, the energy budget of the cloud implies a luminosity drop in Mrk 463E by a factor 3-20 over the last 40,000 years. The ALMA observations of 12^{12}CO(2-1) and adjacent 1mm continuum reveal the presence of āˆ¼\sim109^{9}MāŠ™_\odot in molecular gas in the system. The molecular gas shows velocity gradients of āˆ¼\sim800 km/s and āˆ¼\sim400 km/s around the Mrk 463E and 463W nuclei, respectively. We conclude that in this system the infall of āˆ¼\sim100s MāŠ™M_\odot/yr of molecular gas is in rough balance with the removal of ionized gas by a biconical outflow being fueled by a relatively small, <<0.01% of accretion onto each SMBH.Comment: Accepted by The Astrophysical Journal, 23 pages, 19 figure

    AMI-LA Observations of the SuperCLASS Super-cluster

    Get PDF
    We present a deep survey of the SuperCLASS super-cluster - a region of sky known to contain five Abell clusters at redshift zāˆ¼0.2z\sim0.2 - performed using the Arcminute Microkelvin Imager (AMI) Large Array (LA) at 15.5Ā ~GHz. Our survey covers an area of approximately 0.9 square degrees. We achieve a nominal sensitivity of 32.0Ā Ī¼32.0~\muJy beamāˆ’1^{-1} toward the field centre, finding 80 sources above a 5Ļƒ5\sigma threshold. We derive the radio colour-colour distribution for sources common to three surveys that cover the field and identify three sources with strongly curved spectra - a high-frequency-peaked source and two GHz-peaked-spectrum sources. The differential source count (i) agrees well with previous deep radio source count, (ii) exhibits no evidence of an emerging population of star-forming galaxies, down to a limit of 0.24Ā ~mJy, and (iii) disagrees with some models of the 15Ā ~GHz source population. However, our source count is in agreement with recent work that provides an analytical correction to the source count from the SKADS Simulated Sky, supporting the suggestion that this discrepancy is caused by an abundance of flat-spectrum galaxy cores as-yet not included in source population models.Comment: 17 pages, 14 figures, 3 tables. Accepted for publication in MNRA
    • ā€¦
    corecore