49 research outputs found

    No persistent behavioural effects of SCUBA diving on reef sharks

    Full text link

    Multiyear social stability and social information use in reef sharks with diel fission–fusion dynamics

    Get PDF
    Animals across vertebrate taxa form social communities and often exist as fission–fusion groups. Central place foragers (CPF) may form groups from which they will predictably disperse to forage, either individually or in smaller groups, before returning to fuse with the larger group. However, the function and stability of social associations in predatory fish acting as CPFs is unknown, as individuals do not need to return to a shelter yet show fidelity to core areas. Using dynamic social networks generated from acoustic tracking data, we document spatially structured sociality in CPF grey reef sharks at a Pacific Ocean atoll. We show that sharks form stable social groups over multiyear periods, with some dyadic associations consistent for up to 4 years. Groups primarily formed during the day, increasing in size throughout the morning before sharks dispersed from the reef at night. Our simulations suggest that multiple individuals sharing a central place and using social information while foraging (i.e. local enhancement) will outperform non-CPF social foragers. We show multiyear social stability in sharks and suggest that social foraging with information transfer could provide a generalizable mechanism for the emergence of sociality with group central place foraging

    Utilizing Spatial Demographic and Life History Variation to Optimize Sustainable Yield of a Temperate Sex-Changing Fish

    Get PDF
    Fish populations vary geographically in demography and life history due to environmental and ecological processes and in response to exploitation. However, population dynamic models and stock assessments, used to manage fisheries, rarely explicitly incorporate spatial variation to inform management decisions. Here, we describe extensive geographic variation in several demographic and life history characteristics (e.g., size structure, growth, survivorship, maturation, and sex change) of California sheephead (Semicossyphus pulcher), a temperate rocky reef fish targeted by recreational and commercial fisheries. Fish were sampled from nine locations throughout southern California in 2007–2008. We developed a dynamic size and age-structured model, parameterized separately for each location, to assess the potential cost or benefit in terms of fisheries yield and conservation objectives of changing minimum size limits and/or fishing mortality rates (compared to the status quo). Results indicate that managing populations individually, with location-specific regulations, could increase yield by over 26% while maintaining conservative levels of spawning biomass. While this local management approach would be challenging to implement in practice, we found statistically similar increases in yield could be achieved by dividing southern California into two separate management regions, reflecting geographic similarities in demography. To maximize yield, size limits should be increased by 90 mm in the northern region and held at current levels in the south. We also found that managing the fishery as one single stock (the status quo), but with a size limit 50 mm greater than the current regulations, could increase overall fishery yield by 15%. Increases in size limits are predicted to enhance fishery yield and may also have important ecological consequences for the predatory role of sheephead in kelp forests. This framework for incorporating demographic variation into fisheries models can be exported generally to other species and may aid in identifying the appropriate spatial scales for fisheries management

    Habitat Associations of Juvenile Fish at Ningaloo Reef, Western Australia: The Importance of Coral and Algae

    Get PDF
    Habitat specificity plays a pivotal role in forming community patterns in coral reef fishes, yet considerable uncertainty remains as to the extent of this selectivity, particularly among newly settled recruits. Here we quantified habitat specificity of juvenile coral reef fish at three ecological levels; algal meadows vs. coral reefs, live vs. dead coral and among different coral morphologies. In total, 6979 individuals from 11 families and 56 species were censused along Ningaloo Reef, Western Australia. Juvenile fishes exhibited divergence in habitat use and specialization among species and at all study scales. Despite the close proximity of coral reef and algal meadows (10's of metres) 25 species were unique to coral reef habitats, and seven to algal meadows. Of the seven unique to algal meadows, several species are known to occupy coral reef habitat as adults, suggesting possible ontogenetic shifts in habitat use. Selectivity between live and dead coral was found to be species-specific. In particular, juvenile scarids were found predominantly on the skeletons of dead coral whereas many damsel and butterfly fishes were closely associated with live coral habitat. Among the coral dependent species, coral morphology played a key role in juvenile distribution. Corymbose corals supported a disproportionate number of coral species and individuals relative to their availability, whereas less complex shapes (i.e. massive & encrusting) were rarely used by juvenile fish. Habitat specialisation by juvenile species of ecological and fisheries importance, for a variety of habitat types, argues strongly for the careful conservation and management of multiple habitat types within marine parks, and indicates that the current emphasis on planning conservation using representative habitat areas is warranted. Furthermore, the close association of many juvenile fish with corals susceptible to climate change related disturbances suggests that identifying and protecting reefs resilient to this should be a conservation priority

    The Lagoon at Caroline/Millennium Atoll, Republic of Kiribati: Natural History of a Nearly Pristine Ecosystem

    Get PDF
    A series of surveys were carried out to characterize the physical and biological parameters of the Millennium Atoll lagoon during a research expedition in April of 2009. Millennium is a remote coral atoll in the Central Pacific belonging to the Republic of Kiribati, and a member of the Southern Line Islands chain. The atoll is among the few remaining coral reef ecosystems that are relatively pristine. The lagoon is highly enclosed, and was characterized by reticulate patch and line reefs throughout the center of the lagoon as well as perimeter reefs around the rim of the atoll. The depth reached a maximum of 33.3 m in the central region of the lagoon, and averaged between 8.8 and 13.7 m in most of the pools. The deepest areas were found to harbor large platforms of Favia matthaii, which presumably provided a base upon which the dominant corals (Acropora spp.) grew to form the reticulate reef structure. The benthic algal communities consisted mainly of crustose coralline algae (CCA), microfilamentous turf algae and isolated patches of Halimeda spp. and Caulerpa spp. Fish species richness in the lagoon was half of that observed on the adjacent fore reef. The lagoon is likely an important nursery habitat for a number of important fisheries species including the blacktip reef shark and Napoleon wrasse, which are heavily exploited elsewhere around the world but were common in the lagoon at Millennium. The lagoon also supports an abundance of giant clams (Tridacna maxima). Millennium lagoon provides an excellent reference of a relatively undisturbed coral atoll. As with most coral reefs around the world, the lagoon communities of Millennium may be threatened by climate change and associated warming, acidification and sea level rise, as well as sporadic local resource exploitation which is difficult to monitor and enforce because of the atoll's remote location. While the remote nature of Millennium has allowed it to remain one of the few nearly pristine coral reef ecosystems in the world, it is imperative that this ecosystem receives protection so that it may survive for future generations

    Temperature Influences Selective Mortality during the Early Life Stages of a Coral Reef Fish

    Get PDF
    For organisms with complex life cycles, processes occurring at the interface between life stages can disproportionately impact survival and population dynamics. Temperature is an important factor influencing growth in poikilotherms, and growth-related processes are frequently correlated with survival. We examined the influence of water temperature on growth-related early life history traits (ELHTs) and differential mortality during the transition from larval to early juvenile stage in sixteen monthly cohorts of bicolor damselfish Stegastes partitus, sampled on reefs of the upper Florida Keys, USA over 6 years. Otolith analysis of settlers and juveniles coupled with environmental data revealed that mean near-reef water temperature explained a significant proportion of variation in pelagic larval duration (PLD), early larval growth, size-at-settlement, and growth during early juvenile life. Among all cohorts, surviving juveniles were consistently larger at settlement, but grew more slowly during the first 6 d post-settlement. For the other ELHTs, selective mortality varied seasonally: during winter and spring months, survivors exhibited faster larval growth and shorter PLDs, whereas during warmer summer months, selection on PLD reversed and selection on larval growth became non-linear. Our results demonstrate that temperature not only shapes growth-related traits, but can also influence the direction and intensity of selective mortality

    Environmental Factors Affecting Large-Bodied Coral Reef Fish Assemblages in the Mariana Archipelago

    Get PDF
    Large-bodied reef fishes represent an economically and ecologically important segment of the coral reef fish assemblage. Many of these individuals supply the bulk of the reproductive output for their population and have a disproportionate effect on their environment (e.g. as apex predators or bioeroding herbivores). Large-bodied reef fishes also tend to be at greatest risk of overfishing, and their loss can result in a myriad of either cascading (direct) or indirect trophic and other effects. While many studies have investigated habitat characteristics affecting populations of small-bodied reef fishes, few have explored the relationship between large-bodied species and their environment. Here, we describe the distribution of the large-bodied reef fishes in the Mariana Archipelago with an emphasis on the environmental factors associated with their distribution. Of the factors considered in this study, a negative association with human population density showed the highest relative influence on the distribution of large-bodied reef fishes; however, depth, water temperature, and distance to deep water also were important. These findings provide new information on the ecology of large-bodied reef fishes can inform discussions concerning essential fish habitat and ecosystem-based management for these species and highlight important knowledge gaps worthy of additional research

    Parrotfish movement patterns vary with spatiotemporal scale

    No full text
    corecore