30 research outputs found
Effectiveness of a Web-Based Colorectal Cancer Screening Patient Decision Aid: A Randomized Controlled Trial in a Mixed-Literacy Population
Colorectal cancer (CRC) screening reduces mortality yet remains underutilized. Low health literacy may contribute to this underutilization by interfering with patients’ ability to understand and receive preventive health services
When a Standard Candle Flickers
The Crab is the only bright steady source in the X-ray sky. The Crab consists of a pulsar wind nebula, a synchrotron nebula, and a cloud of expanding ejecta. On small scales, the Crab is extremely complex and turbulent. X-ray astronomers have often used the Crab as a standard candle to calibrate instruments, assuming its spectrum and overall flux remains constant over time. Four instruments (Fermi/GBM, RXTE/PCA, Swift/BAT, INTEGRAL/ISGRI) show a approx.5% (50 m Crab) decline in the Crab from 2008-2010. This decline appears to be larger with increasing energy and is not present in the pulsed flux, implying changes in the shock acceleration, electron population or magnetic field in the nebula. The Crab is known to be dynamic on small scales, so it is not too surprising that its total flux varies as well. Caution should be taken when using the Crab for in-orbit calibrations
All-Sky Monitoring of Variable Sources with Fermi GBM
This slide presentation reviews the monitoring of variable sources with the Fermi Gamma Ray Burst Monitor (GBM). It reviews the use of the Earth Occultation technique, the observations of the Crab Nebula with the GBM, and the comparison with other satellite's observations. The instruments on board the four satellites indicate a decline in the Crab from 2008-2010
The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report
The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument
The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report
The Habitable Exoplanet Observatory, or HabEx, has been designed to be the
Great Observatory of the 2030s. For the first time in human history,
technologies have matured sufficiently to enable an affordable space-based
telescope mission capable of discovering and characterizing Earthlike planets
orbiting nearby bright sunlike stars in order to search for signs of
habitability and biosignatures. Such a mission can also be equipped with
instrumentation that will enable broad and exciting general astrophysics and
planetary science not possible from current or planned facilities. HabEx is a
space telescope with unique imaging and multi-object spectroscopic capabilities
at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities
allow for a broad suite of compelling science that cuts across the entire NASA
astrophysics portfolio. HabEx has three primary science goals: (1) Seek out
nearby worlds and explore their habitability; (2) Map out nearby planetary
systems and understand the diversity of the worlds they contain; (3) Enable new
explorations of astrophysical systems from our own solar system to external
galaxies by extending our reach in the UV through near-IR. This Great
Observatory science will be selected through a competed GO program, and will
account for about 50% of the HabEx primary mission. The preferred HabEx
architecture is a 4m, monolithic, off-axis telescope that is
diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two
starlight suppression systems: a coronagraph and a starshade, each with their
own dedicated instrument.Comment: Full report: 498 pages. Executive Summary: 14 pages. More information
about HabEx can be found here: https://www.jpl.nasa.gov/habex
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
EVMS Self-Surveillance of Remote Handled Low Level Waste (RHLLW) Project
DOE G 413.3-10A, Section 3.a states: “The Contractor has primary responsibility for implementing and maintaining a surveillance program to ensure continued compliance of the system with ANSI/EIA-748B. DOE O 413.3B requires the FPD to ensure the contractor conducts a Self-Surveillance annually. This annual Self-Surveillance,…should cover all 32 guidelines of the ANSI/EIA748B. Documentation of the Self-Surveillance is sent to the CO and the PMSO (copy to OECM) confirming the continued compliance of their EVMS ANSI/EIA748B...” This review, and the associated report, is deemed to satisfy this requirement