51 research outputs found
Phasing diffuse scattering. Application of the SIR2002 algorithm to the non-crystallographic phase problem
A new phasing algorithm has been used to determine the phases of diffuse
elastic X-ray scattering from a non-periodic array of gold balls of 50 nm
diameter. Two-dimensional real-space images, showing the charge-density
distribution of the balls, have been reconstructed at 50 nm resolution from
transmission diffraction patterns recorded at 550 eV energy. The reconstructed
image fits well with scanning electron microscope (SEM) image of the same
sample. The algorithm, which uses only the density modification portion of the
SIR2002 program, is compared with the results obtained via the
Gerchberg-Saxton-Fienup HIO algorithm. In this way the relationship between
density modification in crystallography and the HiO algorithm used in signal
and image processing is elucidated.Comment: 7 pages, 12 figure
Long-term outcome of COVID-19 patients treated with helmet noninvasive ventilation vs. high-flow nasal oxygen: a randomized trial
Background: Long-term outcomes of patients treated with helmet noninvasive ventilation (NIV) are unknown: safety concerns regarding the risk of patient self-inflicted lung injury and delayed intubation exist when NIV is applied in hypoxemic patients. We assessed the 6-month outcome of patients who received helmet NIV or high-flow nasal oxygen for COVID-19 hypoxemic respiratory failure. Methods: In this prespecified analysis of a randomized trial of helmet NIV versus high-flow nasal oxygen (HENIVOT), clinical status, physical performance (6-min-walking-test and 30-s chair stand test), respiratory function and quality of life (EuroQoL five dimensions five levels questionnaire, EuroQoL VAS, SF36 and Post-Traumatic Stress Disorder Checklist for the DSM) were evaluated 6 months after the enrollment. Results: Among 80 patients who were alive, 71 (89%) completed the follow-up: 35 had received helmet NIV, 36 high-flow oxygen. There was no inter-group difference in any item concerning vital signs (N = 4), physical performance (N = 18), respiratory function (N = 27), quality of life (N = 21) and laboratory tests (N = 15). Arthralgia was significantly lower in the helmet group (16% vs. 55%, p = 0.002). Fifty-two percent of patients in helmet group vs. 63% of patients in high-flow group had diffusing capacity of the lungs for carbon monoxide < 80% of predicted (p = 0.44); 13% vs. 22% had forced vital capacity < 80% of predicted (p = 0.51). Both groups reported similar degree of pain (p = 0.81) and anxiety (p = 0.81) at the EQ-5D-5L test; the EQ-VAS score was similar in the two groups (p = 0.27). Compared to patients who successfully avoided invasive mechanical ventilation (54/71, 76%), intubated patients (17/71, 24%) had significantly worse pulmonary function (median diffusing capacity of the lungs for carbon monoxide 66% [Interquartile range: 47â77] of predicted vs. 80% [71â88], p = 0.005) and decreased quality of life (EQ-VAS: 70 [53â70] vs. 80 [70â83], p = 0.01). Conclusions: In patients with COVID-19 hypoxemic respiratory failure, treatment with helmet NIV or high-flow oxygen yielded similar quality of life and functional outcome at 6 months. The need for invasive mechanical ventilation was associated with worse outcomes. These data indicate that helmet NIV, as applied in the HENIVOT trial, can be safely used in hypoxemic patients. Trial registration Registered on clinicaltrials.gov NCT04502576 on August 6, 202
EPIdemiology of Surgery-Associated Acute Kidney Injury (EPIS-AKI) : Study protocol for a multicentre, observational trial
More than 300 million surgical procedures are performed each year. Acute kidney injury (AKI) is a common complication after major surgery and is associated with adverse short-term and long-term outcomes. However, there is a large variation in the incidence of reported AKI rates. The establishment of an accurate epidemiology of surgery-associated AKI is important for healthcare policy, quality initiatives, clinical trials, as well as for improving guidelines. The objective of the Epidemiology of Surgery-associated Acute Kidney Injury (EPIS-AKI) trial is to prospectively evaluate the epidemiology of AKI after major surgery using the latest Kidney Disease: Improving Global Outcomes (KDIGO) consensus definition of AKI. EPIS-AKI is an international prospective, observational, multicentre cohort study including 10 000 patients undergoing major surgery who are subsequently admitted to the ICU or a similar high dependency unit. The primary endpoint is the incidence of AKI within 72 hours after surgery according to the KDIGO criteria. Secondary endpoints include use of renal replacement therapy (RRT), mortality during ICU and hospital stay, length of ICU and hospital stay and major adverse kidney events (combined endpoint consisting of persistent renal dysfunction, RRT and mortality) at day 90. Further, we will evaluate preoperative and intraoperative risk factors affecting the incidence of postoperative AKI. In an add-on analysis, we will assess urinary biomarkers for early detection of AKI. EPIS-AKI has been approved by the leading Ethics Committee of the Medical Council North Rhine-Westphalia, of the Westphalian Wilhelms-University MĂŒnster and the corresponding Ethics Committee at each participating site. Results will be disseminated widely and published in peer-reviewed journals, presented at conferences and used to design further AKI-related trials. Trial registration number NCT04165369
Protein phasing at non-atomic resolution by combining Patterson and VLD techniques
Phasing proteins at non-atomic resolution is still a challenge
for any ab initio method. A variety of algorithms [Patterson
deconvolution, superposition techniques, a cross-correlation
function (C map), the VLD (vive la difference) approach, the
FF function, a nonlinear iterative peak-clipping algorithm
(SNIP) for defining the background of a map and the free
lunch extrapolation method] have been combined to over-
come the lack of experimental information at non-atomic
resolution. The method has been applied to a large number
of protein diffraction data sets with resolutions varying from
Ì , with the condition that S or heavier atoms are
atomic to 2.1 A
present in the protein structure. The applications include the
use of ARP/wARP to check the quality of the final electron-
density maps in an objective way. The results show that
resolution is still the maximum obstacle to protein phasing,
Ì
but also suggest that the solution of protein structures at 2.1 A
resolution is a feasible, even if still an exceptional, task for
the combined set of algorithms implemented in the phasing
program. The approach described here is more efficient than
the previously described procedures: e.g. the combined use of
the algorithms mentioned above is frequently able to provide
phases of sufficiently high quality to allow automatic model
building. The method is implemented in the current version of
SIR2014
- âŠ