1,957 research outputs found

    The triangle map: a model of quantum chaos

    Full text link
    We study an area preserving parabolic map which emerges from the Poincar\' e map of a billiard particle inside an elongated triangle. We provide numerical evidence that the motion is ergodic and mixing. Moreover, when considered on the cylinder, the motion appear to follow a gaussian diffusive process.Comment: 4 pages in RevTeX with 4 figures (in 6 eps-files

    Quantum chaos and the double-slit experiment

    Full text link
    We report on the numerical simulation of the double-slit experiment, where the initial wave-packet is bounded inside a billiard domain with perfectly reflecting walls. If the shape of the billiard is such that the classical ray dynamics is regular, we obtain interference fringes whose visibility can be controlled by changing the parameters of the initial state. However, if we modify the shape of the billiard thus rendering classical (ray) dynamics fully chaotic, the interference fringes disappear and the intensity on the screen becomes the (classical) sum of intensities for the two corresponding one-slit experiments. Thus we show a clear and fundamental example in which transition to chaotic motion in a deterministic classical system, in absence of any external noise, leads to a profound modification in the quantum behaviour.Comment: 5 pages, 4 figure

    Anomalous diffusion and dynamical localization in a parabolic map

    Full text link
    We study numerically classical and quantum dynamics of a piecewise parabolic area preserving map on a cylinder which emerges from the bounce map of elongated triangular billiards. The classical map exhibits anomalous diffusion. Quantization of the same map results in a system with dynamical localization and pure point spectrum.Comment: 4 pages in RevTeX (4 ps-figures included

    Quantum localization and cantori in chaotic billiards

    Full text link
    We study the quantum behaviour of the stadium billiard. We discuss how the interplay between quantum localization and the rich structure of the classical phase space influences the quantum dynamics. The analysis of this model leads to new insight in the understanding of quantum properties of classically chaotic systems.Comment: 4 pages in RevTex with 4 eps figures include

    Quantum Fractal Fluctuations

    Full text link
    We numerically analyse quantum survival probability fluctuations in an open, classically chaotic system. In a quasi-classical regime, and in the presence of classical mixed phase space, such fluctuations are believed to exhibit a fractal pattern, on the grounds of semiclassical arguments. In contrast, we work in a classical regime of complete chaoticity, and in a deep quantum regime of strong localization. We provide evidence that fluctuations are still fractal, due to the slow, purely quantum algebraic decay in time produced by dynamical localization. Such findings considerably enlarge the scope of the existing theory.Comment: revtex, 4 pages, 5 figure

    The Sato Grassmannian and the CH hierarchy

    Full text link
    We discuss how the Camassa-Holm hierarchy can be framed within the geometry of the Sato Grassmannian.Comment: 10 pages, no figure

    A 3-component extension of the Camassa-Holm hierarchy

    Full text link
    We introduce a bi-Hamiltonian hierarchy on the loop-algebra of sl(2) endowed with a suitable Poisson pair. It gives rise to the usual CH hierarchy by means of a bi-Hamiltonian reduction, and its first nontrivial flow provides a 3-component extension of the CH equation.Comment: 15 pages; minor changes; to appear in Letters in Mathematical Physic

    Excitation of Small Quantum Systems by High-Frequency Fields

    Full text link
    The excitation by a high frequency field of multi--level quantum systems with a slowly varying density of states is investigated. A general approach to study such systems is presented. The Floquet eigenstates are characterized on several energy scales. On a small scale, sharp universal quasi--resonances are found, whose shape is independent of the field parameters and the details of the system. On a larger scale an effective tight--binding equation is constructed for the amplitudes of these quasi--resonances. This equation is non--universal; two classes of examples are discussed in detail.Comment: 4 pages, revtex, no figure

    Quantum Poincare Recurrences for Hydrogen Atom in a Microwave Field

    Full text link
    We study the time dependence of the ionization probability of Rydberg atoms driven by a microwave field, both in classical and in quantum mechanics. The quantum survival probability follows the classical one up to the Heisenberg time and then decays algebraically as P(t) ~ 1/t. This decay law derives from the exponentially long times required to escape from some region of the phase space, due to tunneling and localization effects. We also provide parameter values which should allow to observe such decay in laboratory experiments.Comment: revtex, 4 pages, 4 figure

    Singular continuous spectra in a pseudo-integrable billiard

    Full text link
    The pseudo-integrable barrier billiard invented by Hannay and McCraw [J. Phys. A 23, 887 (1990)] -- rectangular billiard with line-segment barrier placed on a symmetry axis -- is generalized. It is proven that the flow on invariant surfaces of genus two exhibits a singular continuous spectral component.Comment: 4 pages, 2 figure
    corecore