638 research outputs found
Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis.
Palmitic acid (PA) induces hepatocyte apoptosis and fuels de novo ceramide synthesis in the endoplasmic reticulum (ER). Myristic acid (MA), a free fatty acid highly abundant in copra/palmist oils, is a predictor of nonalcoholic steatohepatitis (NASH) and stimulates ceramide synthesis. Here we investigated the synergism between MA and PA in ceramide synthesis, ER stress, lipotoxicity and NASH. Unlike PA, MA is not lipotoxic but potentiated PA-mediated lipoapoptosis, ER stress, caspase-3 activation and cytochrome c release in primary mouse hepatocytes (PMH). Moreover, MA kinetically sustained PA-induced total ceramide content by stimulating dehydroceramide desaturase and switched the ceramide profile from decreased to increased ceramide 14:0/ceramide16:0, without changing medium and long-chain ceramide species. PMH were more sensitive to equimolar ceramide14:0/ceramide16:0 exposure, which mimics the outcome of PA plus MA treatment on ceramide homeostasis, than to either ceramide alone. Treatment with myriocin to inhibit ceramide synthesis and tauroursodeoxycholic acid to prevent ER stress ameliorated PA plus MA induced apoptosis, similar to the protection afforded by the antioxidant BHA, the pan-caspase inhibitor z-VAD-Fmk and JNK inhibition. Moreover, ruthenium red protected PMH against PA and MA-induced cell death. Recapitulating in vitro findings, mice fed a diet enriched in PA plus MA exhibited lipodystrophy, hepatosplenomegaly, increased liver ceramide content and cholesterol levels, ER stress, liver damage, inflammation and fibrosis compared to mice fed diets enriched in PA or MA alone. The deleterious effects of PA plus MA-enriched diet were largely prevented by in vivo myriocin treatment. These findings indicate a causal link between ceramide synthesis and ER stress in lipotoxicity, and imply that the consumption of diets enriched in MA and PA can cause NASH associated with lipodystrophy
Transcriptional dissection of pancreatic tumors engrafted in mice.
BACKGROUND: Engraftment of primary pancreas ductal adenocarcinomas (PDAC) in mice to generate patient-derived xenograft (PDX) models is a promising platform for biological and therapeutic studies in this disease. However, these models are still incompletely characterized. Here, we measured the impact of the murine tumor environment on the gene expression of the engrafted human tumoral cells.
METHODS: We have analyzed gene expression profiles from 35 new PDX models and compared them with previously published microarray data of 18 PDX models, 53 primary tumors and 41 cell lines from PDAC. The results obtained in the PDAC system were further compared with public available microarray data from 42 PDX models, 108 primary tumors and 32 cell lines from hepatocellular carcinoma (HCC). We developed a robust analysis protocol to explore the gene expression space. In addition, we completed the analysis with a functional characterization of PDX models, including if changes were caused by murine environment or by serial passing.
RESULTS: Our results showed that PDX models derived from PDAC, or HCC, were clearly different to the cell lines derived from the same cancer tissues. Indeed, PDAC- and HCC-derived cell lines are indistinguishable from each other based on their gene expression profiles. In contrast, the transcriptomes of PDAC and HCC PDX models can be separated into two different groups that share some partial similarity with their corresponding original primary tumors. Our results point to the lack of human stromal involvement in PDXs as a major factor contributing to their differences from the original primary tumors. The main functional differences between pancreatic PDX models and human PDAC are the lower expression of genes involved in pathways related to extracellular matrix and hemostasis and the up- regulation of cell cycle genes. Importantly, most of these differences are detected in the first passages after the tumor engraftment.
CONCLUSIONS: Our results suggest that PDX models of PDAC and HCC retain, to some extent, a gene expression memory of the original primary tumors, while this pattern is not detected in conventional cancer cell lines. Expression changes in PDXs are mainly related to pathways reflecting the lack of human infiltrating cells and the adaptation to a new environment. We also provide evidence of the stability of gene expression patterns over subsequent passages, indicating early phases of the adaptation process
Development of a Semi-Field System for Contained Field Trials With Aedes Aegypti in Southern Mexico
Development of new genetic approaches to either interfere with the ability of mosquitoes to transmit dengue virus or to reduce vector population density requires progressive evaluation from the laboratory to contained field trials, before open field release. Trials in contained outdoor facilities are an important part of this process because they can be used to evaluate the effectiveness and reliability of modified strains in settings that include natural environmental variations without releasing mosquitoes into the open field. We describe a simple and cost-effective semi-field system designed to study Aedes aegypti carrying a dominant lethal gene (fsRIDL) in semi-field conditions. We provide a protocol for establishing, maintaining, and monitoring stable Ae. aegypti population densities inside field cages
Association of neurexin 3 polymorphisms with smoking behavior.
The Neurexin 3 gene (NRXN3) has been associated with dependence on various addictive substances, as well as with the degree of smoking in schizophrenic patients and impulsivity among tobacco abusers. To further evaluate the role of NRXN3 in nicotine addiction, we analyzed single nucleotide polymorphisms (SNPs) and a copy number variant (CNV) within the NRXN3 genomic region. An initial study was carried out on 157 smokers and 595 controls, all of Spanish Caucasian origin. Nicotine dependence was assessed using the Fagerstrom index and the number of cigarettes smoked per day. The 45 NRXN3 SNPs genotyped included all the SNPs previously associated with disease, and a previously described deletion within NRXN3. This analysis was replicated in 276 additional independent smokers and 568 controls. Case-control association analyses were performed at the allele, genotype and haplotype levels. Allelic and genotypic association tests showed that three NRXN3 SNPs were associated with a lower risk of being a smoker. The haplotype analysis showed that one block of 16 Kb, consisting of two of the significant SNPs (rs221473 and rs221497), was also associated with lower risk of being a smoker in both the discovery and the replication cohorts, reaching a higher level of significance when the whole sample was considered [odds ratio = 0.57 (0.42-0.77), permuted P = 0.0075]. By contrast, the NRXN3 CNV was not associated with smoking behavior. Taken together, our results confirm a role for NRXN3 in susceptibility to smoking behavior, and strongly implicate this gene in genetic vulnerability to addictive behaviors
Human case of swine influenza A (H1N1), Aragon, Spain, November 2008
A human case of swine influenza A (H1N1) in a 50-year-old woman from a village near Teruel (Aragon, in the north-east of Spain), with a population of about 200 inhabitants, has been reported in November 2008.S
Selective Fractionation And Isolation Of Allelopathic Compounds From Helianthus Annuus L. Leaves By Means Of High-Pressure Techniques
The allelopathic potential of Helianthus annuus L. leaves was study based on bio-directed chemical fractionation approach. Aerial parts of H. annuus were extracted by means of SFE using supercritical carbon dioxide (scCO2) and ESE using CO2+50% EtOH/H2O (varying ethanol in water from 0 to 100%). Extractions were carried out at 400 bar, 55 °C, 20 g/min and for 4 h. Then, extracts were fractionated in three separators at the following conditions: S1: 200 bar/45 °C; S2: 90 bar/40 °C; and S3: 1 atm/30 °C. ESE obtained higher overall yields than scCO2 and the use of water as cosolvent (CO2+50% H2O) resulted in a S3 fraction free from chlorophylls and rich in bioactive compounds. 14 compounds, including fatty acids, terpenes, flavonoids and heliannuols, were isolated from this fraction. After performing the bioassay on pure compounds, heliannuol D, tambulin, pinoresinol and sesquiterpene 10-oxo-isodauc-3-en-15-al showed the most effective inhibitor profiles
Large-scale evaluation of shotgun triacylglycerol profiling for the fast detection of olive oil adulteration
Fast and effective analytical screening tools providing new suitable authenticity markers and applicable to a large number of samples are required to efficiently control the global olive oil (OO) production, and allow the rapid detection of low levels of adulterants even with fatty acid composition similar to OO. The present study aims to develop authentication models for the comprehensive detection of illegal blends of OO with adulterants including different types of high linoleic (HL) and high oleic (HO) vegetable oils at low concentrations (2–10%) based on shotgun triacylglycerol (TAG) profile obtained by Flow Injection Analysis-Heated Electrospray Ionisation-High Resolution Mass Spectrometry (FIA-HESI-HRMS) at a large-scale experimental design. The sample set covers a large natural variability of both OO and adulterants, resulting in more than one thousand samples analysed. A combined PLS-DA binary modelling based on shotgun TAG profiling proved to be a fit for purpose screening tool in terms of efficiency and applicability. The external validation resulted in the correct classification of the 86.8% of the adulterated samples (diagnostic sensitivity = 0.87), and the 81.1% of the genuine samples (diagnostic specificity = 0.81), with an 85.1% overall correct classification (efficiency = 0.85)
Inhibitory effect against polymerase and ribonuclease activities of HIV-reverse transcriptase of the aqueous leaf extract of Terminalia triflora
Dichloromethane, methanol and aqueous extracts from the leaves of Terminalia triflora were investigated for their inhibitory effect on polymerase and ribonuclease activities of HIV reverse transcriptase.The most potent activity was found in the aqueous extract, which inhibited both polymerase and ribonuclease activities of the enzyme with an IC50 of 1.6 micro g/mL and 1.8 micro g/mL respectively. The antiinfective activity of the extract was demonstrated in HLT4LacZ-IIIB cell culture with an IC50 of 1.0 micro g/mL. The extract was submitted to a purification process by extractive and chromatographic methods. The activity remained in the hydrophillic fraction. Tannins present in this active purified fraction, as determined by TLC and HPLC methods, could account for the anti HIV-RT activity found in the aqueous extract
A critique of non-extensive q-entropy for thermal statistics
During the past dozen years there have been numerous articles on a relation
between entropy and probability which is non-additive and has a parameter
that depends on the nature of the thermodynamic system under consideration. For
this relation corresponds to the Boltzmann-Gibbs entropy, but for other
values of it is claimed that it leads to a formalism which is consistent
with the laws of thermodynamics. However, it is shown here that the joint
entropy for systems having {\it different} values of is not defined in this
formalism, and consequently fundamental thermodynamic concepts such as
temperature and heat exchange cannot be considered for such systems. Moreover,
for the probability distribution for weakly interacting systems does
not factor into the product of the probability distribution for the separate
systems, leading to spurious correlations and other unphysical consequences,
e.g. non-extensive energy, that have been ignored in various applications given
in the literature
Stepwise strategy based on 1H-NMR fingerprinting in combination with chemometrics to determine the content of vegetable oils in olive oil mixtures
1H NMR fingerprinting of edible oils and a set of multivariate classification and regression models organised in a decision tree is proposed as a stepwise strategy to assure the authenticity and traceability of olive oils and their declared blends with other vegetable oils (VOs). Oils of the ‘virgin olive oil’ and ‘olive oil’ categories and their mixtures with the most common VOs, i.e. sunflower, high oleic sunflower, hazelnut, avocado, soybean, corn, refined palm olein and desterolized high oleic sunflower oils, were studied. Partial least squares (PLS) discriminant analysis provided stable and robust binary classification models to identify the olive oil type and the VO in the blend. PLS regression afforded models with excellent precisions and acceptable accuracies to determine the percentage of VO in the mixture. The satisfactory performance of this approach, tested with blind samples, confirm its potential to support regulations and control bodies
- …