28 research outputs found
A low power blood flow transmitter. Transmission of cardiovascular response to weightlessness Progress report, 1 Mar. - 31 May 1970
Low power blood flow transmitter to determine cardiovascular response to weightlessnes
Multiphase photo-capillary reactors coated with TiO2 films: preparation, characterization and photocatalytic performance
Quartz capillaries were assessed as multiphase photocatalytic reactors. The tested reaction was the salicylic acid (2-dihidroxibenzoic acid) oxidation. The catalyst (TiO2) was either in slurry or immobilized by sol-gel method onto the capillary wall. All experiments were conducted under oxygen flow and Taylor flow hydrodynamic regime. TiO2 Films were characterized by Raman spectroscopy, diffuse reflectance UV-Vis spectroscopy and scanning electronic microscopy. The effect of two synthesis variables was established. These variables were volumetric ratio of precursors solutions (i-PrO:2-propanol:nitric acid) and number of capillary coating cycles. These variables were found to importantly affect film homogeneity and oxidation rate. The highest initial reaction rate (106.32x10-6 mol dm-3s-1) was obtained when using the TiO2 as film prepared with a precursors volumetric ratio of 1:15:1 and with two coating cycles. For comparison purposes, the same oxidation process was conducted in a stirred reactor and it was found that the reaction rate value is diminished by almost four times in comparison with that obtained under Taylor flow in the capillary reactor. Selectivity was found to be dependant on the type of catalyst addition, slurry or immobilized. Catalytic films employed in this non-common reaction system were 2 reused three times losing less than 10% of their photocatalytic activity. The photonic efficiency was found to be two orders of magnitude higher in the coated capillary reactor than in the slurry stirred reactor.L. Hurtado acknowledges CONACYT-Mexico the scholarship No. 56499. Project PRODEP for advanced oxidation processes is also acknowledged for financial support
Photocatalytic Activity under Simulated Sunlight of Bi-Modified TiO 2
The synthesis of Bi-modified TiO2 thin films, with different Bi contents, is reported. The obtained materials were characterized by energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy (RS), X-ray diffraction (XRD), photoluminescence (PL), and diffuse reflectance spectroscopy (DRS), in order to obtain information on their chemical composition, vibrational features, and optical properties, respectively. Compositional characterization reveals that the bismuth content can be varied in an easy way from 0.5 to 25.4âat. %. Raman results show that the starting material corresponds to the anatase phase of crystalline TiO2, and Bi addition promotes the formation of bismuth titanates, Bi2Ti2O7 at Bi contents of 10.4âat. % and the Bi4Ti3O12 at Bi contents of 21.5 and 25.4âat. %. Optical measurements reveal that the band gap narrows from 3.3âeV to values as low as 2.7âeV. The photocatalytic activity was tested in the degradation reaction of the Malachite Green carbinol base dye (MG) as a model molecule under simulated sunlight, where the most relevant result is that photocatalytic formulations containing bismuth showed higher catalytic activity than pure TiO2. The higher photocatalytic activity of MG degradation of 67% reached by the photocatalytic formulation of 21.5âat. % of bismuth is attributed to the presence of the crystalline phase perovskite-type bismuth titanate, Bi4Ti3O12
CoMoW/Al2O3-MgO-Li2O Catalytic formulations for DBT hydrodesulphurization
"Low acidity catalytic formulations were prepared incorporating MgO and Li2O to the conventional CoMoW/Al2O3 catalysts. The CoMoW active phases were impregnated using an ammoniacal solution containing the metallic complexes as citrates. A high dispersio
Chitosan-Based Coatings to Prevent the Decay of <i>Populus</i> spp. Wood Caused by <i>Trametes Versicolor</i>
Chitosan and chitosan oligomers are receiving increasing attention due to their antimicrobial properties. In the present study, they were assayed as a preventive treatment against white-rot decay of Populus wood (very important in economic and environmental terms), caused by Trametes versicolor fungus. Their capacity to incorporate different chemical species into the polymer structure with a view to improving their anti-fungal activity was also assessed by mixing oligo-chitosan with propolis and silver nanoparticles. The minimum inhibitory concentration of medium-molecular weight chitosan (MMWC), chitosan oligomers (CO), propolis (P), nanosilver (nAg), and their binary and ternary composites against T. versicolor was determined in vitro. Although all products exhibited anti-fungal properties, composites showed an enhanced effect as compared to the individual products: 100% mycelial growth inhibition was attained for concentrations of 2.0 and 0.2 mg·mL−1 for the CO-P binary mixture, respectively; and 2 µg·mL−1 for nAg in the ternary mixture. Subsequently, MMWC, CO, CO-P and CO-P-nAg composites were tested on poplar wood blocks as surface protectors. Wood decay caused by the fungus was monitored by microscopy and vibrational spectroscopy, evidencing the limitations of the CO-based coatings in comparison with MMWC, which has a higher viscosity and better adhesion properties. The usage of MMWC holds promise for poplar wood protection, with potential industrial applications
Two-dimensional carbon nanostructures obtained by laser ablation in liquid: effect of an ultrasonic field
7 pags., 6 figs.The ablation of a carbon target immersed in deionized water, in absence and in presence of ultrasonic waves is reported, and the differences investigated. The obtained nanostructures are characterized by transmission electron microscopy, Raman spectroscopy and photoluminescence. Transmission electron images reveal that the produced carbon nanostructures, with and without ultrasonic excitation, are graphene-like sheets with improved quality in the first case. Samples prepared with ultrasounds show graphene layers with large sizes (several microns) and regular shapes, whereas the samples prepared without ultrasounds show smaller sizes and irregular shapes; additionally, some dispersed quasi-spherical nanoparticles are observed in the samples prepared without ultrasound. Photoluminescence measurements of the obtained nanostructures reveal emission in the blue spectral region.This work was partially supported by the CONACYT project CB-240998 and the Spanish project MINECO/FEDER
TEC2015-69916-C2-1-R. Additionally, ININ through the project
CB-602 is acknowledged. M. Martinez-Orts acknowledges the financial
support of the Autonomous Community of Madrid and the European
Social Fund (contract E-28-2017-0679526). The technical support with
TEM measurements provided by P. Castillo of the electron microscopy
laboratory of UAMI is also recognized