76 research outputs found
Simulación de Procesadores CFAR
The report analizes the behaviour of parametric processors being put under several critical enviromental conditions. Those conditions border-line clutter and multiple target. brand-new processor is proposed by us, OSGO are sharp Finally a CFAR which improves the previous enes in usage and behaviour conditions.Peer ReviewedPostprint (published version
Compresión digital de señales chirp. Compresión en coma fija
It is presented the simulation of a fixed point digital matched filter, in order to estimate their perfomances.Peer ReviewedPostprint (published version
Photocatalytic C-H Azolation of Arenes Using Heterogeneous Carbon Nitride in Batch and Flow.
Funder: China Scholarship Council (CSC)Funder: Cambridge Trust and Science and Engineering Research Board (SERB) IndiaFunder: University of Cambridge; Id: http://dx.doi.org/10.13039/501100000735The functionalization of aryl C(sp2 )-H bonds is a useful strategy for the late-stage modification of biologically active molecules, especially for the regioselective introduction of azole heterocycles to prepare medicinally-relevant compounds. Herein, we describe a practical photocatalytic transformation using a mesoporous carbon nitride (mpg-CNx ) photocatalyst, which enables the efficient azolation of various arenes through direct oxidation. The method exhibits a broad substrate scope and is amenable to the late-stage functionalization of several pharmaceuticals. Due to the heterogeneous nature and high photocatalytic stability of mpg-CNx , the catalyst can be easily recovered and reused leading to greener and more sustainable routes, using either batch or flow processing, to prepare these important compounds of interest in pharmaceutical and agrochemical research
Relationship between Respiratory Microbiome and Systemic Inflammatory Markers in COPD : A Pilot Study
The respiratory microbiome may influence the development and progression of COPD by modulating local immune and inflammatory events. We aimed to investigate whether relative changes in respiratory bacterial abundance are also associated with systemic inflammation, and explore their relationship with the main clinical COPD phenotypes. Multiplex analysis of inflammatory markers and transcript eosinophil-related markers were analyzed on peripheral blood in a cohort of stable COPD patients (n = 72). Respiratory microbiome composition was analyzed by 16S rRNA microbial sequencing on spontaneous sputum. Spearman correlations were applied to test the relationship between the microbiome composition and systemic inflammation. The concentration of the plasma IL-8 showed an inverted correlation with the relative abundance of 17 bacterial genera in the whole COPD cohort. COPD patients categorized as eosinophilic showed positive relationships with blood eosinophil markers and inversely correlated with the degree of airway obstruction and the number of exacerbations during the previous year. COPD patients categorized as frequent exacerbators were enriched with the bacterial genera Pseudomonas which, in turn, was positively associated with the severity of airflow limitation and the prior year's exacerbation history. The associative relationships of the sputum microbiome with the severity of the disease emphasize the relevance of the interaction between the respiratory microbiota and systemic inflammation
Rare thyroid malignancies in Europe : data from the information network on rare cancers in Europe (RARECAREnet)
Data will be made available on requestPeer reviewedPostprin
Innovative computerized dystrophin quantification method based on spectral confocal microscopy
© 2023 by the authorsSeveral clinical trials are working on drug development for Duchenne and Becker muscular dystrophy (DMD and BMD) treatment, and, since the expected increase in dystrophin is relatively subtle, high-sensitivity quantification methods are necessary. There is also a need to quantify dystrophin to reach a definitive diagnosis in individuals with mild BMD, and in female carriers. We developed a method for the quantification of dystrophin in DMD and BMD patients using spectral confocal microscopy. It offers the possibility to capture the whole emission spectrum for any antibody, ensuring the selection of the emission peak and allowing the detection of fluorescent emissions of very low intensities. Fluorescence was evaluated first on manually selected regions of interest (ROIs), proving the usefulness of the methodology. Later, ROI selection was automated to make it operator-independent. The proposed methodology correctly classified patients according to their diagnosis, detected even minimal traces of dystrophin, and the results obtained automatically were statistically comparable to the manual ones. Thus, spectral imaging could be implemented to measure dystrophin expression and it could pave the way for detailed analysis of how its expression relates to the clinical course. Studies could be further expanded to better understand the expression of dystrophin-associated protein complexes (DAPCs).This research was partially founded by “Somriures Valents” (private grant).Peer ReviewedPostprint (published version
Conidiation Color Mutants of Aspergillus fumigatus Are Highly Pathogenic to the Heterologous Insect Host Galleria mellonella
The greater wax moth Galleria mellonella has been widely used as
a heterologous host for a number of fungal pathogens including Candida
albicans and Cryptococcus neoformans. A positive
correlation in pathogenicity of these yeasts in this insect model and animal
models has been observed. However, very few studies have evaluated the
possibility of applying this heterologous insect model to investigate virulence
traits of the filamentous fungal pathogen Aspergillus
fumigatus, the leading cause of invasive aspergillosis. Here, we have
examined the impact of mutations in genes involved in melanin biosynthesis on
the pathogenicity of A. fumigatus in the G.
mellonella model. Melanization in A. fumigatus confers
bluish-grey color to conidia and is a known virulence factor in mammal models.
Surprisingly, conidial color mutants in B5233 background that have deletions in
the defined six-gene cluster required for DHN-melanin biosynthesis caused
enhanced insect mortality compared to the parent strain. To further examine and
confirm the relationship between melanization defects and enhanced virulence in
the wax moth model, we performed random insertional mutagenesis in the Af293
genetic background to isolate mutants producing altered conidia colors. Strains
producing conidia of previously identified colors and of novel colors were
isolated. Interestingly, these color mutants displayed a higher level of
pathogenicity in the insect model compared to the wild type. Although some of
the more virulent color mutants showed increased resistance to hydrogen
peroxide, overall phenotypic characterizations including secondary metabolite
production, metalloproteinase activity, and germination rate did not reveal a
general mechanism accountable for the enhanced virulence of these color mutants
observed in the insect model. Our observations indicate instead, that
exacerbated immune response of the wax moth induced by increased exposure of
PAMPs (pathogen-associated molecular patterns) may cause self-damage that
results in increased mortality of larvae infected with the color mutants. The
current study underscores the limitations of using this insect model for
inferring the pathogenic potential of A. fumigatus strains in
mammals, but also points to the importance of understanding the innate immunity
of the insect host in providing insights into the pathogenicity level of
different fungal strains in this model. Additionally, our observations that
melanization defective color mutants demonstrate increased virulence in the
insect wax moth, suggest the potential of using melanization defective mutants
of native insect fungal pathogens in the biological control of insect
populations
COVID-19 Convalescent Plasma Therapy Decreases Inflammatory Cytokines: A Randomized Controlled Trial
This study examined the role that cytokines may have played in the beneficial outcomes found when outpatient individuals infected with SARS-CoV-2 were transfused with COVID-19 convalescent plasma (CCP) early in their infection. We found that the pro-inflammatory cytokine IL-6 decreased significantly faster in patients treated early with CCP. Participants with COVID-19 treated with CCP later in the infection did not have the same effect. This decrease in IL-6 levels after early CCP treatment suggests a possible role of inflammation in COVID-19 progression. The evidence of IL-6 involvement brings insight into the possible mechanisms involved in CCP treatment mitigating SARS-CoV-2 severity
Dynamics of Inflammatory Responses After SARS-CoV-2 Infection by Vaccination Status in the USA: A Prospective Cohort Study
BACKGROUND: Cytokines and chemokines play a critical role in the response to infection and vaccination. We aimed to assess the longitudinal association of COVID-19 vaccination with cytokine and chemokine concentrations and trajectories among people with SARS-CoV-2 infection.
METHODS: In this longitudinal, prospective cohort study, blood samples were used from participants enrolled in a multi-centre randomised trial assessing the efficacy of convalescent plasma therapy for ambulatory COVID-19. The trial was conducted in 23 outpatient sites in the USA. In this study, participants (aged ≥18 years) were restricted to those with COVID-19 before vaccination or with breakthrough infections who had blood samples and symptom data collected at screening (pre-transfusion), day 14, and day 90 visits. Associations between COVID-19 vaccination status and concentrations of 21 cytokines and chemokines (measured using multiplexed sandwich immunoassays) were examined using multivariate linear mixed-effects regression models, adjusted for age, sex, BMI, hypertension, diabetes, trial group, and COVID-19 waves (pre-alpha or alpha and delta).
FINDINGS: Between June 29, 2020, and Sept 30, 2021, 882 participants recently infected with SARS-CoV-2 were enrolled, of whom 506 (57%) were female and 376 (43%) were male. 688 (78%) of 882 participants were unvaccinated, 55 (6%) were partly vaccinated, and 139 (16%) were fully vaccinated at baseline. After adjusting for confounders, geometric mean concentrations of interleukin (IL)-2RA, IL-7, IL-8, IL-15, IL-29 (interferon-λ), inducible protein-10, monocyte chemoattractant protein-1, and tumour necrosis factor-α were significantly lower among the fully vaccinated group than in the unvaccinated group at screening. On day 90, fully vaccinated participants had approximately 20% lower geometric mean concentrations of IL-7, IL-8, and vascular endothelial growth factor-A than unvaccinated participants. Cytokine and chemokine concentrations decreased over time in the fully and partly vaccinated groups and unvaccinated group. Log
INTERPRETATION: Initially and during recovery from symptomatic COVID-19, fully vaccinated participants had lower concentrations of inflammatory markers than unvaccinated participants suggesting vaccination is associated with short-term and long-term reduction in inflammation, which could in part explain the reduced disease severity and mortality in vaccinated individuals.
FUNDING: US Department of Defense, National Institutes of Health, Bloomberg Philanthropies, State of Maryland, Mental Wellness Foundation, Moriah Fund, Octapharma, HealthNetwork Foundation, and the Shear Family Foundation
- …