12 research outputs found
ABA Criminal Justice Section Task Force on College Due Process Rights and Victim Protections: Recommendations for Colleges and Universities in Resolving Allegations of Campus Sexual Misconduct
The Executive Committee of the ABA Criminal Justice Section commissioned the Task Force on College Due Process Rights and Victim Protections in November 2016. Immediately after, extensive efforts were made to find members that represented all interested parties: victims, the accused, universities, other stakeholders, and national experts. The Task Force was fully constituted in the winter of 2017, and it ended up including two voting members who were originally liaisons from the ABA Commission on Domestic and Sexual Violence and the ABA Section of Civil Rights and Social Justice. This elevation was made in recognition of their significant contributions
ABA Criminal Justice Section Task Force on College Due Process Rights and Victim Protections: Recommendations for Colleges and Universities in Resolving Allegations of Campus Sexual Misconduct
The Executive Committee of the ABA Criminal Justice Section commissioned the Task Force on College Due Process Rights and Victim Protections in November 2016. Immediately after, extensive efforts were made to find members that represented all interested parties: victims, the accused, universities, other stakeholders, and national experts. The Task Force was fully constituted in the winter of 2017, and it ended up including two voting members who were originally liaisons from the ABA Commission on Domestic and Sexual Violence and the ABA Section of Civil Rights and Social Justice. This elevation was made in recognition of their significant contributions
Recommended from our members
Transcriptome Sequence Analysis of Pediatric Acute Megakaryoblastic Leukemia Identifies An Inv(16)(p13.3;q24.3)-Encoded CBFA2T3-GLIS2 Fusion Protein As a Recurrent Lesion in 39% of Non-Infant Cases: A Report From the St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project
Abstract
Abstract 757
Acute Megakaryoblastic Leukemia (AMKL) accounts for ∼10% of childhood acute myeloid leukemia (AML). Although AMKL patients with down syndrome (DS-AMKL) have an excellent 5 year event-free survival (EFS), non-DS-AMKL patients have an extremely poor outcome with a 3 year EFS of less than 40%. With the exception of the t(1;22) translocation seen in infant non-DS-AMKL, little is known about the molecular genetic lesions that underlie this leukemia subtype. To define the landscape of mutations that occur in non-DS-AMKL, we performed transcriptome sequencing on diagnostic blasts from 14 cases (discovery cohort) using the illumina platform. Our results identified chromosomal rearrangements resulting in the expression of novel fusion transcripts in 12/14 cases. Remarkably, in 7/14 cases we detected an inversion on chromosome 16 [inv(16)(p13.3;q24.3)] that resulted in the juxtaposition of the CBFA2T3, a member of the ETO family of transcription factors, next to GLIS2 resulting in a CBFA2T3-GLIS2 chimeric gene encoding an in frame fusion protein. 6 cases in the discovery cohort fused exon 10 of CBFA2T3 to exon 3 of GLIS2, while 1 case carried a larger product that fused exon 11 of CBFA2T3 to exon 1 of GLIS2. Both products retain the 3 CBFA2T3 N-terminal nervy homology regions that mediate protein interactions, and the 5 GLIS2 C-terminal zinc finger domains that bind the Glis DNA consensus sequence, along with one of its N-terminal transcriptional regulatory domains. GLIS2 is a member of the GLI super family of transcription factors and has been demonstrated to play a role in regulating expression of GLI target genes as well as inhibiting WNT signaling through the binding of beta catenin. Although GLIS2 is not normally expressed in hematopoietic cells, the translocation results in high level expression of the CBFA2T3-GLIS2 fusion protein. In addition to CBFA2T3-GLIS2, chimeric transcripts were detected in 6/7 cases that lacked evidence of the inv(16)(p13.3;q24.3). Specifically, we detected GATA2-HOXA9, MN1-FLI1, NIPBL-HOXB9, NUP98-KDM5A, GRB10-SDK1 and C8orf76-HOXA11AS, each in an individual case. Importantly, several of the genes involved in these translocations either play a direct role in normal megakaryocytic differentiation (GATA2 and FLI1), or have been previously shown to be involved in leukemogenesis (HOXA9, MN1, HOXB9). Evaluation of a recurrency cohort of 42 samples including 14 additional pediatric cases and 28 adult cases by RT-PCR revealed 4 additional pediatric samples carrying CBFA2T3-GLIS2 for an overall frequency of 39% in pediatric AMKL. In addition to these somatic structural variations, we also identified mutations in genes previously shown to play a role in megakaryoblastic leukemia including activating mutations in JAK2 and MPL (36%).
To gain insight into the mechanism whereby CBFA2T3-GLIS2 promotes leukemogenesis, we introduced the fusion into murine hematopoietic cells and assessed its effect on in vitro colony replating as a surrogate measure of self-renewal. Hematopoietic cells transduced with a mCherry expressing retroviral vector failed to form colonies after the second replating. By contrast, expression of either wild-type GLIS2 or the CBFA2T3-GLIS2 fusion resulted in a marked increase in the self-renewal capacity, with colony formation persisting through eight replatings. Immunophenotypic analysis of the CBFA2T3-GLIS2 expressing colonies revealed evidence of megakaryocytic differentiation. Importantly, the CBFA2T3-GLIS2 cells remained growth factor dependent suggesting that cooperating mutations in growth factor signaling pathways are required for full leukemic transformation.
Taken together these data identify a novel cryptic inv(16)-encoded CBFA2T3-GLIS2 fusion protein as a recurrent driver mutation in approximately 40% of non-infant pediatric non-DS-AMKLs. Moreover, the majority of pediatric cases that lacked this lesion were shown by transcriptome sequence analysis to contain other chromosomal rearrangements that encoded fusion proteins that directly alter megakaryocytic differentiation and/or myeloid cell growth. The alteration of a key transcriptional regulator within the hedgehog signaling pathways in a substantial percentage of pediatric AMKL raises the possibility that inhibition of this pathway may have a therapeutic benefit in this aggressive form of AML. *TAG and ALG contributed equally to this work.
Disclosures:
Biondi: BMS, Novartis, Micromed: Consultancy, Membership on an entity's Board of Directors or advisory committees. Ravandi:Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Honoraria. Kantarjian:Novartis: Consultancy, Research Funding; Pfizer: Research Funding; BMS: Research Funding. Doehner:Hoffmann La Roche: Honoraria
Abstract 4867: Identification of an inv(16)-encoded CBFA2T3-GLIS2 fusion protein in 34% of non-infant acute megkaryoblastic leukemias: A report from the Pediatric Cancer Genome Project
Abstract
Acute Megakaryoblastic Leukemia (AMKL) accounts for ∼10% of childhood acute myeloid leukemia (AML). Although AMKL patients with Down syndrome (DS-AMKL) have an excellent 5 year event-free survival (EFS), non-DS-AMKL patients have an extremely poor outcome with a 3 year EFS < 40%. To define the landscape of mutations that occur in non-DS-AMKL, we performed transcriptome sequencing on diagnostic blasts from 14 cases. Our results identified chromosomal rearrangements resulting in the expression of novel fusion transcripts in 12/14 cases. Remarkably, in 7/14 cases, we detected an inversion on chromosome 16 [inv(16)(p13.3;q24.3)] that resulted in the juxtaposition of CBFA2T3, a member of the ETO family of transcription factors, next to GLIS2 resulting in a CBFA2T3-GLIS2 chimeric gene encoding an in frame fusion protein. GLIS2 is a member of the GLI family of transcription factors that mediate sonic hedgehog (SHH) signaling and has been demonstrated to play a role in regulating expression of GLI target genes. Evaluation of a recurrency cohort of 52 samples including 24 additional pediatric cases and 28 adult cases revealed 6 additional pediatric samples carrying the fusion for an overall frequency of 34% in pediatric AMKL. To gain insight into the mechanism whereby CBFA2T3-GLIS2 promotes leukemogenesis, we introduced the fusion into murine hematopoietic cells and assessed its effect on in vitro colony replating as a surrogate measure of self-renewal. Cells transduced with a mCherry expressing retrovirus failed to form colonies after the 2nd replating. By contrast, expression of either wild-type GLIS2 or CBFA2T3-GLIS2 resulted in a marked increase in the self-renewal capacity, with colony formation persisting through 12 replatings. Immunophenotypic analysis of the CBFA2T3-GLIS2 expressing colonies revealed evidence of megakaryocytic differentiation. GLI transcription factors modulate expression of multiple downstream targets including components of BMP, WNT, and SHH pathways. To interrogate these pathways as potential contributors to the enhanced self-renewal capacity, we conducted luciferase reporter assays and found that CBFA2T3-GLIS2 functioned as a strong activator of the BMP responsive element. Furthermore, expression of CBFA2T3-GLIS2 in Drosophila resulted in ectopic expression of endogenous dpp, the fly homolog of BMP4, and conferred a dpp gain of function phenotype. Taken together these data identify a novel inv(16)-encoded CBFA2T3-GLIS2 fusion protein as a recurrent driver mutation in ∼35% of non-infant pediatric non-DS-AMKLs. The alteration of a key transcriptional regulator within the SHH signaling pathways in a substantial percentage of pediatric AMKL raises the possibility that inhibition of this pathway or downstream activated pathways may have a therapeutic benefit in this aggressive form of AML.
Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 4867. doi:1538-7445.AM2012-486
Pediatric non–Down syndrome acute megakaryoblastic leukemia is characterized by distinct genomic subsets with varying outcomes
Acute megakaryoblastic leukemia (AMKL) is a subtype of acute myeloid leukemia (AML) in which cells morphologically resemble abnormal megakaryoblasts. While rare in adults, AMKL accounts for 4–15% of newly diagnosed childhood AML cases. AMKL in individuals without Down syndrome (non-DS-AMKL) is frequently associated with poor clinical outcomes. Previous efforts have identified chimeric oncogenes in a substantial number o
An Inv(16)(p13.3q24.3)-Encoded CBFA2T3-GLIS2 Fusion Protein Defines an Aggressive Subtype of Pediatric Acute Megakaryoblastic Leukemia
To define the mutation spectrum in non-Down syndrome acute megakaryoblastic leukemia (non-DS-AMKL), we performed transcriptome sequencing on diagnostic blasts from 14 pediatric patients and validated our findings in a recurrency/validation cohort consisting of 34 pediatric and 28 adult AMKL samples. Our analysis identified a cryptic chromosome 16 inversion (inv(16)(p13.3q24.3)) in 27% of pediatric cases, which encodes a CBFA2T3-GLIS2 fusion protein. Expression of CBFA2T3-GLIS2 in Drosophila and murine hematopoietic cells induced bone morphogenic protein (BMP) signaling and resulted in a marked increase in the self-renewal capacity of hematopoietic progenitors. These data suggest that expression of CBFA2T3-GLIS2 directly contributes to leukemogenesis.
► CBFA2T3-GLIS2 is a recurrent fusion gene in pediatric AMKL ► CBFA2T3-GLIS2 AMKL has a distinct expression profile and an inferior outcome ► CBFA2T3-GLIS2 induces BMP signaling and enhanced self-renewal of progenitor cell