7,415 research outputs found

    Clouds, photolysis and regional tropospheric ozone budgets.

    Get PDF
    We use a three-dimensional chemical transport model to examine the shortwave radiative effects of clouds on the tropospheric ozone budget. In addition to looking at changes in global concentrations as previous studies have done, we examine changes in ozone chemical production and loss caused by clouds and how these vary in different parts of the troposphere. On a global scale, we find that clouds have a modest effect on ozone chemistry, but on a regional scale their role is much more significant, with the size of the response dependent on the region. The largest averaged changes in chemical budgets (±10–14%) are found in the marine troposphere, where cloud optical depths are high. We demonstrate that cloud effects are small on average in the middle troposphere because this is a transition region between reduction and enhancement in photolysis rates. We show that increases in boundary layer ozone due to clouds are driven by large-scale changes in downward ozone transport from higher in the troposphere rather than by decreases in in-situ ozone chemical loss rates. Increases in upper tropospheric ozone are caused by higher production rates due to backscattering of radiation and consequent increases in photolysis rates, mainly J(NO2). The global radiative effect of clouds on isoprene, through decreases of OH in the lower troposphere, is stronger than on ozone. Tropospheric isoprene lifetime increases by 7% when taking clouds into account. We compare the importance of clouds in contributing to uncertainties in the global ozone budget with the role of other radiatively-important factors. The budget is most sensitive to the overhead ozone column, while surface albedo and clouds have smaller effects. However, uncertainty in representing the spatial distribution of clouds may lead to a large sensitivity of the ozone budget components on regional scales

    Interannual variability of tropospheric composition:the influence of changes in emissions, meteorology and clouds

    Get PDF
    We have run a chemistry transport model (CTM) to systematically examine the drivers of interannual variability of tropospheric composition during 1996-2000. This period was characterised by anomalous meteorological conditions associated with the strong El Nino of 1997-1998 and intense wildfires, which produced a large amount of pollution. On a global scale, changing meteorology (winds, temperatures, humidity and clouds) is found to be the most important factor driving interannual variability of NO2 and ozone on the timescales considered. Changes in stratosphere-troposphere exchange, which are largely driven by meteorological variability, are found to play a particularly important role in driving ozone changes. The strong influence of emissions on NO2 and ozone interannual variability is largely confined to areas where intense biomass burning events occur. For CO, interannual variability is almost solely driven by emission changes, while for OH meteorology dominates, with the radiative influence of clouds being a very strong contributor. Through a simple attribution analysis for 1996-2000 we conclude that changing cloudiness drives 25% of the interannual variability of OH over Europe by affecting shortwave radiation. Over Indonesia this figure is as high as 71%. Changes in cloudiness contribute a small but non-negligible amount (up to 6%) to the interannual variability of ozone over Europe and Indonesia. This suggests that future assessments of trends in tropospheric oxidizing capacity should account for interannual variability in cloudiness, a factor neglected in many previous studies

    Estimating Spatio-Temporal Risks from Volcanic Eruptions using an Agent-Based Model

    Get PDF
    Managing disasters caused by natural events, especially volcanic crises, requires a range of approaches, including risk modelling and analysis. Risk modelling is commonly conducted at the community/regional scale using GIS. However, people and objects move in response to a crisis, so static approaches cannot capture the dynamics of the risk properly, as they do not accommodate objects’ movements within time and space. The emergence of Agent-Based Modelling makes it possible to model the risk at an individual level as it evolves over space and time. We propose a new approach of Spatio-Temporal Dynamics Model of Risk (STDMR) by integrating multi-criteria evaluation (MCE) within a georeferenced agent-based model, using Mt. Merapi, Indonesia, as a case study. The model makes it possible to simulate the spatio-temporal dynamics of those at risk during a volcanic crisis. Importantly, individual vulnerability is heterogeneous and depends on the characteristics of the individuals concerned. The risk for the individuals is dynamic and changes along with the hazard and their location. The model is able to highlight a small number of high-risk spatio-temporal positions where, due to the behaviour of individuals who are evacuating the volcano and the dynamics of the hazard itself, the overall risk in those times and places is extremely high. These outcomes are extremely relevant for the stakeholders, and the work of coupling an ABM, MCE, and dynamic volcanic hazard is both novel and contextually relevant

    Technical Note: Adjoint formulation of the TOMCAT atmospheric transport scheme in the Eulerian backtracking framework (RETRO-TOM)

    Get PDF
    A new methodology for the formulation of an adjoint to the transport component of the chemistry transport model TOMCAT is described and implemented in a new model, RETRO-TOM. The Eulerian backtracking method is used, allowing the forward advection scheme (Prather's second-order moments) to be efficiently exploited in the backward adjoint calculations. Prather's scheme is shown to be time symmetric, suggesting the possibility of high accuracy. To attain this accuracy, however, it is necessary to make a careful treatment of the "density inconsistency" problem inherent to offline transport models. The results are verified using a series of test experiments. These demonstrate the high accuracy of RETRO-TOM when compared with direct forward sensitivity calculations, at least for problems in which flux limiters in the advection scheme are not required. RETRO-TOM therefore combines the flexibility and stability of a "finite difference of adjoint" formulation with the accuracy of an "adjoint of finite difference" formulation

    Magnetic relaxation studies on a single-molecule magnet by time-resolved inelastic neutron scattering

    Full text link
    Time-resolved inelastic neutron scattering measurements on an array of single-crystals of the single-molecule magnet Mn12ac are presented. The data facilitate a spectroscopic investigation of the slow relaxation of the magnetization in this compound in the time domain.Comment: 3 pages, 4 figures, REVTEX4, to appear in Appl. Phys. Lett., for an animation see also http://www.dcb.unibe.ch/groups/guedel/members/ow2/trins.ht

    Active transport, independent mobility and territorial range among children residing in disadvantaged areas

    Full text link
    Available online 14 March 2014Regular physical activity during childhood and adolescence promotes physical and mental health across the lifespan. Walking and cycling for transport may be important, inexpensive and accessible sources of physical activity among socioeconomically disadvantaged youth. This study aimed to examine active transport and independent mobility (i.e. walking/cycling without adult accompaniment) on journeys to school and other local destinations, and their associations with children's physical activity in disadvantaged urban and rural areas of Victoria, Australia. In addition, associations were examined between children's perceived accessibility of local destinations by walking/cycling and their territorial range (i.e. how far they were allowed to roam without adult accompaniment).Survey-reported active transport, independent mobility, territorial range, and objectively-measured physical activity were analysed for 271 children (mean age 12.1 (SD 2.2) years). Habitual travel modes (on 3 or more days/week) were examined. Car travel was most prevalent to (43%) and from (33%) school, while 25% walked to school, 31% walked home, and few cycled (6%). Most walking/cycling trips were made independently. Total weekly duration rather than frequency of active transport to school was positively associated with physical activity. No associations were found between independent mobility and physical activity. Territorial range was restricted - only a third of children were allowed to roam more than 15. min from home alone, while approximately half were allowed to do so with friends. The number of accessible destination types in the neighbourhood was positively associated with territorial range. This research provides evidence of how active transport contributes to children's physical activity and a preliminary understanding of children's independent mobility on journeys to school and local destinations. Further research is required to explore influences on these behaviours.Alison Carver, Jenny Veitch, Shannon Sahlqvist, David Crawford, Clare Hum

    Small heat-shock proteins and clusterin: intra- and extracellular molecular chaperones with a common mechanism of action and function

    Get PDF
    Small heat-shock proteins (sHsps) and clusterin are molecular chaperones that share many functional similarities despite their lack of significant sequence similarity. These functional similarities, and some differences, are discussed. sHsps are ubiquitous intracellular proteins whereas clusterin is generally found extracellularly. Both chaperones potently prevent the amorphous aggregation and precipitation of target proteins under stress conditions such as elevated temperature, reduction and oxidation. In doing so, they act on the slow off-folding protein pathway. The conformational dynamism and aggregated state of both proteins may be crucial for their chaperone function. Subunit exchange is likely to be important in regulating chaperone action; the dissociated form of the protein is probably the chaperone-active species rather than the aggregated state. They both exert their chaperone action without the need for hydrolysis of ATP and have little ability to refold target proteins. Increased expression of sHsp and clusterin accompanies a range of diseases, e.g. Alzheimer’s, Creutzfeldt-Jakob and Parkinson’s diseases, that arise from protein misfolding and deposition of highly structured protein aggregates known as amyloid fibrils. The interaction of sHsps and clusterin with fibril-forming species is discussed along with their ability to prevent fibril formation, probably via utilization of their chaperone ability

    Modelling Individual Evacuation Decisions during Natural Disasters: A Case Study of Volcanic Crisis in Merapi, Indonesia

    Get PDF
    As the size of human populations increases, so does the severity of the impacts of natural disasters. This is partly because more people are now occupying areas which are susceptible to hazardous natural events, hence, evacuation is needed when such events occur. Evacuation can be the most important action to minimise the impact of any disaster, but in many cases there are always people who are reluctant to leave. This paper describes an agent-based model (ABM) of evacuation decisions, focusing on the emergence of reluctant people in times of crisis and using Merapi, Indonesia as a case study. The individual evacuation decision model is influenced by several factors formulated from a literature review and survey. We categorised the factors influencing evacuation decisions into two opposing forces, namely, the driving factors to leave (evacuate) versus those to stay, to formulate the model. The evacuation decision (to stay/leave) of an agent is based on an evaluation of the strength of these driving factors using threshold-based rules. This ABM was utilised with a synthetic population from census microdata, in which everyone is characterised by the decision rule. Three scenarios with varying parameters are examined to calibrate the model. Validations were conducted using a retrodictive approach by performing spatial and temporal comparisons between the outputs of simulation and the real data. We present the results of the simulations and discuss the outcomes to conclude with the most plausible scenario
    corecore