13,333 research outputs found
Brand Logos More Prevalent In Recent News Sports Photos
The exposure is non-intrusive, serving as a backdrop to the sports action occurring at the arena. Because it cannot be separated from the action, this communication form is difficult to tune out perceptually
White dwarfs with a surface electrical charge distribution: Equilibrium and stability
The equilibrium configuration and the radial stability of white dwarfs
composed of charged perfect fluid are investigated. These cases are analyzed
through the results obtained from the solution of the hydrostatic equilibrium
equation. We regard that the fluid pressure and the fluid energy density follow
the relation of a fully degenerate electron gas. For the electric charge
distribution in the object, we consider that it is centralized only close to
the white dwarfs' surfaces. We obtain larger and more massive white dwarfs when
the total electric charge is increased. To appreciate the effects of the
electric charge in the structure of the star, we found that it must be in the
order of with which the electric field is about
. For white dwarfs with electric fields close to the
Schwinger limit, we obtain masses around . We also found that in
a system constituted by charged static equilibrium configurations, the maximum
mass point found on it marks the onset of the instability. This indicates that
the necessary and sufficient conditions to recognize regions constituted by
stable and unstable equilibrium configurations against small radial
perturbations are respectively and .Comment: This is a preprint. The original paper will be published in EPJ
Cosmic homogeneity: a spectroscopic and model-independent measurement
Cosmology relies on the Cosmological Principle, i.e., the hypothesis that the
Universe is homogeneous and isotropic on large scales. This implies in
particular that the counts of galaxies should approach a homogeneous scaling
with volume at sufficiently large scales. Testing homogeneity is crucial to
obtain a correct interpretation of the physical assumptions underlying the
current cosmic acceleration and structure formation of the Universe. In this
Letter, we use the Baryon Oscillation Spectroscopic Survey to make the first
spectroscopic and model-independent measurements of the angular homogeneity
scale . Applying four statistical estimators, we show that the
angular distribution of galaxies in the range 0.46 < z < 0.62 is consistent
with homogeneity at large scales, and that varies with
redshift, indicating a smoother Universe in the past. These results are in
agreement with the foundations of the standard cosmological paradigm.Comment: 5 pages, 2 figures, Version accepted by MNRA
Power-law statistics and stellar rotational velocities in the Pleiades
In this paper we will show that, the non-gaussian statistics framework based
on the Kaniadakis statistics is more appropriate to fit the observed
distributions of projected rotational velocity measurements of stars in the
Pleiades open cluster. To this end, we compare the results from the
and -distributions with the Maxwellian.Comment: 13 pages, 3 figure
Forecasting cosmological constraints from age of high-z galaxies
We perform Monte Carlo simulations based on current age estimates of high-z
objects to forecast constraints on the equation of state (EoS) of the dark
energy. In our analysis, we use two different EoS parameterizations, namely,
the so-called CPL and its uncorrelated form and calculate the improvements on
the figure of merit for both cases. Although there is a clear dependence of the
FoM with the size and accuracy of the synthetic age samples, we find that the
most substantial gain in FoM comes from a joint analysis involving age and
baryon acoustic oscillation data.Comment: 4 pages, 13 figures, late
- …