53,401 research outputs found

    Nonlinear Boundary Value Problems via Minimization on Orlicz-Sobolev Spaces

    Full text link
    We develop arguments on convexity and minimization of energy functionals on Orlicz-Sobolev spaces to investigate existence of solution to the equation \displaystyle -\mbox{div} (\phi(|\nabla u|) \nabla u) = f(x,u) + h \mbox{in} \Omega under Dirichlet boundary conditions, where Ξ©βŠ‚RN\Omega \subset {\bf R}^{N} is a bounded smooth domain, Ο•:(0,∞)⟢(0,∞)\phi : (0,\infty)\longrightarrow (0,\infty) is a suitable continuous function and f:Ω×Rβ†’Rf: \Omega \times {\bf R} \to {\bf R} satisfies the Carath\'eodory conditions, while hh is a measure.Comment: 14 page
    • …
    corecore