7,341 research outputs found

    Pool temperature stratification analysis in CIRCE-ICE facility with RELAP5-3D© model and comparison with experimental tests

    Get PDF
    In the frame of heavy liquid metal (HLM) technology development, CIRCE pool facility at ENEA/Brasimone Research Center was updated by installing ICE (Integral Circulation Experiments) test section which simulates the thermal behavior of a primary system in a HLM cooled pool reactor. The experimental campaign led to the characterization of mixed convection and thermal stratification in a HLM pool in safety relevant conditions and to the distribution of experimental data for the validation of CFD and system codes. For this purpose, several thermocouples were installed into the pool using 4 vertical supports in different circumferential position for a total of 119 thermocouples [1][2]. The aim of this work is to investigate the capability of the system code RELAP5-3D (c) to simulate mixed convection and thermal stratification phenomena in a HLM pool in steady state conditions by comparing code results with experimental data. The pool has been simulated by a 3D component divided into 1728 volumes, 119 of which are centered in the exact position of the thermocouples. Three dimensional model of the pool is completed with a mono-dimensional nodalization of the primary main flow path. The results obtained by code simulations are compared with a steady state condition carried out in the experimental campaign. Results of axial, radial and azimuthal temperature profile into the pool are in agreement with the available experimental data Furthermore the code is able to well simulate operating conditions into the main flow path of the test section

    Pre-test analysis of protected loss of primary pump transients in CIRCE-HERO facility

    Get PDF
    In the frame of LEADER project (Lead-cooled European Advanced Demonstration Reactor), a new configuration of the steam generator for ALFRED (Advanced Lead Fast Reactor European Demonstrator) was proposed. The new concept is a super-heated steam generator, double wall bayonet tube type with leakage monitoring [1]. In order to support the new steam generator concept, in the framework of Horizon 2020 SESAME project (thermal hydraulics Simulations and Experiments for the Safety Assessment of MEtal cooled reactors), the ENEA CIRCE pool facility will be refurbished to host the HERO (Heavy liquid mEtal pRessurized water cOoled tubes) test section to investigate a bundle of seven full scale bayonet tubes in ALFRED-like thermal hydraulics conditions. The aim of this work is to verify thermofluid dynamic performance of HERO during the transition from nominal to natural circulation condition. The simulations have been performed with RELAP5-3D© by using the validated geometrical model of the previous CIRCE-ICE test section [2], in which the preceding heat exchanger has been replaced by the new bayonet bundle model. Several calculations have been carried out to identify thermal hydraulics performance in different steady state conditions. The previous calculations represent the starting points of transient tests aimed at investigating the operation in natural circulation. The transient tests consist of the protected loss of primary pump, obtained by reducing feed-water mass flow to simulate the activation of DHR (Decay Heat Removal) system, and of the loss of DHR function in hot conditions, where feed-water mass flow rate is absent. According to simulations, in nominal conditions, HERO bayonet bundle offers excellent thermal hydraulic behavior and, moreover, it allows the operation in natural circulation

    Post-test simulation of a PLOFA transient test in the CIRCE-HERO facility

    Get PDF
    CIRCE is a lead–bismuth eutectic alloy (LBE) pool facility aimed to simulate the primary system of a heavy liquid metal (HLM) cooled pool-type fast reactor. The experimental facility was implemented with a new test section, called HERO (Heavy liquid mEtal pRessurized water cOoled tubes), which consists of a steam generator composed of seven double-wall bayonet tubes (DWBT) with an active length of six meters. The experimental campaign aims to investigate HERO behavior, which is representative of the tubes that will compose ALFRED SG. In the framework of the Horizon 2020 SESAME project, a transient test was selected for the realization of a validation benchmark. The test consists of a protected loss of flow accident (PLOFA) simulating the shutdown of primary pumps, the reactor scram and the activation of the DHR system. A RELAP5-3D© nodalization scheme was developed in the pre-test phase at DIAEE of “Sapienza” University of Rome, providing useful information to the experimentalists. The model consisted to a mono-dimensional scheme of the primary flow path and the SG secondary side, and a multi-dimensional component simulating the large LBE pool. The analysis of experimental data, provided by ENEA, has suggested to improve the thermal–hydraulic model with a more detailed nodalization scheme of the secondary loop, looking to reproduce the asymmetries observed on the DWBTs operation. The paper summarizes the post-test activity performed in the frame of the H2020 SESAME project as a contribution of the benchmark activity, highlighting a global agreement between simulations and experiment for all the primary circuit physical quantities monitored. Then, the attention is focused on the secondary system operation, where uncertainties related to the boundary conditions affect the computational results

    Pro-inflammatory genetic markers of atherosclerosis

    Get PDF
    Atherosclerosis (AS) is a chronic, progressive, multifactorial disease mostly affecting large and medium-sized elastic and muscular arteries. It has formerly been considered a bland lipid storage disease. Currently, multiple independent pathways of evidence suggest this pathological condition is a peculiar form of inflammation, triggered by cholesterol-rich lipoproteins and influenced both by environmental and genetic factors. The Human Genome Project opened up the opportunity to dissect complex human traits and to understand basic pathways of multifactorial diseases such as AS. Population-based association studies have emerged as powerful tools for examining genes with a role in common multifactorial diseases that have a strong environmental component. These association studies often estimate the risk of developing a certain disease in carriers and non-carriers of a particular genetic polymorphism. Dissecting out the influence of pro-inflammatory genes within the complex pathophysiology of AS and its complications will help to provide a more complete risk assessment and complement known classical cardiovascular risk factors. The detection of a risk profile will potentially allow both the early identification of individuals susceptible to disease and the possible discovery of potential targets for drug or lifestyle modification; i.e. it will open the door to personalized medicine

    A General Mathematical Formulation for the Determination of Differential Leakage Factors in Electrical Machines with Symmetrical and Asymmetrical Full or Dead-Coil Multiphase Windings

    Get PDF
    This paper presents a simple and general mathematical formulation for the determination of the differential leakage factor for both symmetrical and asymmetrical full and dead-coil windings of electrical machines. The method can be applied to all multiphase windings and considers Görges polygons in conjunction with masses geometry in order to find an easy and affordable way to compute the differential leakage factor, avoiding the adoption of traditional methods that refer to the Ossanna's infinite series, which has to be obviously truncated under the bound of a predetermined accuracy. Moreover, the method described in this paper allows the easy determination of both the minimum and maximum values of the differential leakage factor, as well as its average value and the time trend. The proposed method, which does not require infinite series, is validated by means of several examples in order to practically demonstrate the effectiveness and the easiness of application of this procedure

    Static friction on the fly: velocity depinning transitions of lubricants in motion

    Full text link
    The dragging velocity of a model solid lubricant confined between sliding periodic substrates exhibits a phase transition between two regimes, respectively with quantized and with continuous lubricant center-of-mass velocity. The transition, occurring for increasing external driving force F_ext acting on the lubricant, displays a large hysteresis, and has the features of depinning transitions in static friction, only taking place on the fly. Although different in nature, this phenomenon appears isomorphic to a static Aubry depinning transition in a Frenkel-Kontorova model, the role of particles now taken by the moving kinks of the lubricant-substrate interface. We suggest a possible realization in 2D optical lattice experiments.Comment: 5 pages, 4 figures, revtex, in print in Phys. Rev. Let

    Tritium transport in the vacuum vessel pressure suppression system for helium cooled pebble bed

    Get PDF
    In the frame of the safety studies for the EU-DEMO reactor, attention is paid to the hydrogen concentration in the vacuum vessel and connected volumes since it would lead to a possible hazard of releasing tritium and activated dust. The risk of explosion cannot be excluded a priori if H2 stockpiles. For this reason, in both water (WCLL) and helium (HCPB) cooled breeding blanket concepts of EU-DEMO, the problem is under investigation with a cross-reference between the available technologies in fission (such as the Passive Autocatalytic Recombiners – PAR) and fusion application. In particular, the recent analyses pointed out the implementation of the PARs into the Vacuum Vessel Pressure Suppression System or linked systems. This paper evaluates the Hydrogen behavior (main mobilized tritium source term) for the Helium-Cooled Pebble Bed (HCPB) VVPSS concept. The analyses preliminary investigate the stratification of the hydrogen mass inventory inside the PSS. In particular, a MELCOR 1.8.6 model of the PSS, based on past activities aimed at dust transport and thermohydraulic analyses, is adopted. The paper also introduces the applicability of PAR technology in the operation range of fusion devices, analyzing the problem of the recombination rate due to the dilution of Hydrogen after a Helium blowdown

    Thermal-hydraulic optimization of a proposed EU-DEMO hydrogen passive removal system

    Get PDF
    As the R&D of magnetic fusion power demonstrating plants are approaching important steps toward concept designs, analysts are working parallelly on the safety assessment of such concepts to identify any potential risk. One of the safety concerns involves the confinement of radioactive substances during normal operation and accidental conditions. Several accident sequences inside the tokamak vacuum vessel or pressure suppression systems are characterized by the risk of hydrogen buildup and subsequent ignition that could threaten the structural confinement integrity. In the Safety and Environment work package of the EUROfusion consortium, possible approaches to mitigate the hydrogen explosion risk are under investigation. One of the exploratory solutions is based on limiting the hydrogen concentration that could reach flammable gas mixture conditions and using Passive Autocatalytic Recombiners (PARs) installed into the atmosphere of the pressure suppression systems tanks to recombine hydrogen. This paper examines the theoretical effectiveness of the PARs intervention during an in-vessel loss of coolant accident without the intervention of the decay heat removal system for the Water-Cooled Lithium Lead (WCLL) concept of EU-DEMO, using an optimization methodology. The involved systems have been modelled in MELCOR to estimate the PARs recombination capability as a function of the thermal-hydraulic parameters of the suppression tanks. Furthermore, the optimizer entity of the RAVEN tool is applied to perform optimization studies on the hydrogen recombination system design parameters. The goal is to explore the geometrical and thermal-hydraulic parameters that maximize the capability of the hydrogen removal system for the WCLL concept

    Asymptotically optimal quantum channel reversal for qudit ensembles and multimode Gaussian states

    Get PDF
    We investigate the problem of optimally reversing the action of an arbitrary quantum channel C which acts independently on each component of an ensemble of n identically prepared d-dimensional quantum systems. In the limit of large ensembles, we construct the optimal reversing channel R* which has to be applied at the output ensemble state, to retrieve a smaller ensemble of m systems prepared in the input state, with the highest possible rate m/n. The solution is found by mapping the problem into the optimal reversal of Gaussian channels on quantum-classical continuous variable systems, which is here solved as well. Our general results can be readily applied to improve the implementation of robust long-distance quantum communication. As an example, we investigate the optimal reversal rate of phase flip channels acting on a multi-qubit register.Comment: 17 pages, 3 figure

    Passive hydrogen recombination during a beyond design basis accident in a fusion DEMO plant

    Get PDF
    One of the most important environmental and safety concerns in nuclear fusion plants is the confinement of radioactive substances into the reactor buildings during both normal operations and accidental conditions. For this reason, hydrogen build-up and subsequent ignition must be avoided, since the pressure and energy generated may threaten the integrity of the confinement structures, causing the dispersion of radioactive and toxic products toward the public environment. Potentially dangerous sources of hydrogen are related to the exothermal oxidation reactions between steam and plasma-facing components or hot dust, which could occur during accidents such as the in-vessel loss of coolant or a wet bypass. The research of technical solutions to avoid the risk of a hydrogen explosion in large fusion power plants is still in progress. In the safety and environment work package of the EUROfusion consortium, activities are ongoing to study solutions to mitigate the hydrogen explosion risk. The main objective is to preclude the occurrence of flammable gas mixtures. One identified solution could deal with the installation of passive autocatalytic recombiners into the atmosphere of the vacuum vessel pressure suppression system tanks. A model to control the PARs recombination capacity as a function of thermal-hydraulic parameters of suppression tanks has been modeled in MELCOR. This paper aims to test the theoretical effectiveness of the PAR intervention during an in-vessel loss of coolant accident without the intervention of the decay heat removal system for the Water-Cooled LithiumLead concept of EU-DEMO
    • 

    corecore