3 research outputs found

    Genomic Enhancers in Brain Health and Disease

    No full text
    Enhancers are non-coding DNA elements that function in cis to regulate transcription from nearby genes. Through direct interactions with gene promoters, enhancers give rise to spatially and temporally precise gene expression profiles in distinct cell or tissue types. In the brain, the accurate regulation of these intricate expression programs across different neuronal classes gives rise to an incredible cellular and functional diversity. Newly developed technologies have recently allowed more accurate enhancer mapping and more sophisticated enhancer manipulation, producing rapid progress in our understanding of enhancer biology. Furthermore, identification of disease-linked genetic variation in enhancer regions has highlighted the potential influence of enhancers in brain health and disease. This review outlines the key role of enhancers as transcriptional regulators, reviews the current understanding of enhancer regulation in neuronal development, function and dysfunction and provides our thoughts on how enhancers can be targeted for technological and therapeutic goals

    The epigenome under pressure: On regulatory adaptation to chronic stress in the brain

    No full text
    Chronic stress (CS) can have long-lasting consequences on behavior and cognition, that are associated with stable changes in gene expression in the brain. Recent work has examined the role of the epigenome in the effects of CS on the brain. This review summarizes experimental evidence in rodents showing that CS can alter the epigenome and the expression of epigenetic modifiers in brain cells, and critically assesses their functional effect on genome function. It discusses the influence of the developmental time of stress exposure on the type of epigenetic changes, and proposes new lines of research that can help clarify these changes and their causal involvement in the impact of CS.ISSN:0959-4388ISSN:1873-688

    Enhancer RNAs are necessary and sufficient for activity-dependent neuronal gene transcription

    No full text
    Enhancer elements in DNA regulate gene expression programs important for neuronal fate and function, and are increasingly implicated in brain disease states. Enhancers undergo bidirectional transcription to generate non-coding enhancer RNAs (eRNAs), but the function of eRNAs in neuronal systems remains controversial. Here, we performed genome-wide characterization of transcribed enhancers from rat cortical neurons, revealing elevated sequence conservation, enriched localization near genes involved in neuronal or synaptic function, and correlated activity-dependent regulation of putative eRNA-mRNA pairs. Functional validation using a CRISPR-dCas9 fusion system to drive eRNA synthesis from enhancers produced corresponding increases in mRNA at linked genes. Focusing on eRNAs arising from enhancers at the Fos gene locus, we report that eRNA and mRNA correlate on a single-cell level, that CRISPR-targeted eRNA delivery to an enhancer is sufficient for mRNA induction, and that eRNA knockdown decreases mRNA and alters neuronal physiology. These results suggest that eRNAs regulate gene expression and neuronal function
    corecore