19 research outputs found

    Operation of a DNA-Based Autocatalytic Network in Serum

    Get PDF
    The potential for inferring the presence of cancer by the detection of miRNA in human blood has motivated research into the design and operation of DNA-based chemical amplifiers that can operate in bodily fluids. As a first step toward this goal, we have tested the operation of a DNA-based autocatalytic network in human serum and mouse serum. With the addition of sodium dodecyl sulfate to prevent degradation by nuclease activity, the network was found to operate successfully with both DNA and RNA catalysts

    Disruption of C-Terminal Cytoplasmic Domain of βPS Integrin Subunit Has Dominant Negative Properties in Developing Drosophila

    No full text
    We have analyzed a set of new and existing strong mutations in the myospheroid gene, which encodes the βPS integrin subunit of Drosophila. In addition to missense and other null mutations, three mutants behave as antimorphic alleles, indicative of dominant negative properties. Unlike null alleles, the three antimorphic mutants are synthetically lethal in double heterozygotes with an inflated (αPS2) null allele, and they fail to complement very weak, otherwise viable alleles of myospheroid. Two of the antimorphs result from identical splice site lesions, which create a frameshift in the C-terminal half of the cytoplasmic domain of βPS. The third antimorphic mutation is caused by a stop codon just before the cytoplasmic splice site. These mutant βPS proteins can support cell spreading in culture, especially under conditions that appear to promote integrin activation. Analyses of developing animals indicate that the dominant negative properties are not a result of inefficient surface expression, or simple competition between functional and nonfunctional proteins. These data indicate that mutations disrupting the C-terminal cytoplasmic domain of integrin β subunits can have dominant negative effects in situ, at normal levels of expression, and that this property does not necessarily depend on a specific new protein sequence or structure. The results are discussed with respect to similar vertebrate β subunit cytoplasmic mutations

    Human Tropomyosin Isoforms in the Regulation of Cytoskeleton Functions

    No full text
    corecore