2 research outputs found

    Evanescence in Coined Quantum Walks

    Full text link
    In this paper we complete the analysis begun by two of the authors in a previous work on the discrete quantum walk on the line [J. Phys. A 36:8775-8795 (2003) quant-ph/0303105 ]. We obtain uniformly convergent asymptotics for the "exponential decay'' regions at the leading edges of the main peaks in the Schr{\"o}dinger (or wave-mechanics) picture. This calculation required us to generalise the method of stationary phase and we describe this extension in some detail, including self-contained proofs of all the technical lemmas required. We also rigorously establish the exact Feynman equivalence between the path-integral and wave-mechanics representations for this system using some techniques from the theory of special functions. Taken together with the previous work, we can now prove every theorem by both routes.Comment: 32 pages AMS LaTeX, 5 figures in .eps format. Rewritten in response to referee comments, including some additional references. v3: typos fixed in equations (131), (133) and (134). v5: published versio

    Three routes to the exact asymptotics for the one-dimensional quantum walk

    No full text
    We demonstrate an alternative method for calculating the asymptotic behaviour of the discrete one-coin quantum walk on the infinite line, via the Jacobi polynomials that arise in the path integral representation. This is significantly easier to use than the Darboux method. It also provides a single integral representation for the wavefunction that works over the full range of positions, n,n, including throughout the transitional range where the behaviour changes from oscillatory to exponential. Previous analyses of this system have run into difficulties in the transitional range, because the approximations on which they were based break down here. The fact that there are two different kinds of approach to this problem (Path Integral vs. Schr\"{o}dinger wave mechanics) is ultimately a manifestation of the equivalence between the path-integral formulation of quantum mechanics and the original formulation developed in the 1920s. We discuss how and why our approach is related to the two methods that have already been used to analyse these systems
    corecore