23,414 research outputs found
Accurate object reconstruction by statistical moments
Statistical moments can offer a powerful means for object description in object sequences. Moments used in this way provide a description of the changing shape of the object with time. Using these descriptions to predict temporal views of the object requires efficient and accurate reconstruction of the object from a limited set of moments, but accurate reconstruction from moments has as yet received only limited attention. We show how we can improve accuracy not only by consideration of formulation, but also by a new adaptive thresholding technique that removes one parameter needed in reconstruction. Both approaches are equally applicable for Legendre and other orthogonal moments to improve accuracy in reconstruction
Transonic Elastic Model for Wiggly Goto-Nambu String
The hitherto controversial proposition that a ``wiggly" Goto-Nambu cosmic
string can be effectively represented by an elastic string model of exactly
transonic type (with energy density inversely proportional to its tension
) is shown to have a firm mathematical basis.Comment: 8 pages, plain TeX, no figure
Thermodynamics and Stability of Higher Dimensional Rotating (Kerr) AdS Black Holes
We study the thermodynamic and gravitational stability of Kerr anti-de Sitter
black holes in five and higher dimensions. We show, in the case of equal
rotation parameters, , that the Kerr-AdS background metrics become
stable, both thermodynamically and gravitationally, when the rotation
parameters take values comparable to the AdS curvature radius. In turn, a
Kerr-AdS black hole can be in thermal equilibrium with the thermal radiation
around it only when the rotation parameters become not significantly smaller
than the AdS curvature radius. We also find with equal rotation parameters that
a Kerr-AdS black hole is thermodynamically favored against the existence of a
thermal AdS space, while the opposite behavior is observed in the case of a
single non-zero rotation parameter. The five dimensional case is however
different and also special in that there is no high temperature thermal AdS
phase regardless of the choice of rotation parameters. We also verify that at
fixed entropy, the temperature of a rotating black hole is always bounded above
by that of a non-rotating black hole, in four and five dimensions, but not in
six and more dimensions (especially, when the entropy approaches zero or the
minimum of entropy does not correspond to the minimum of temperature). In this
last context, the six dimensional case is marginal.Comment: 15 pages, 23 eps figures, RevTex
Gravitating superconducting strings with timelike or spacelike currents
We construct gravitating superconducting string solutions of the U(1)_{local}
x U(1)_{global} model solving the coupled system of Einstein and matter field
equations numerically. We study the properties of these solutions in dependence
on the ratio between the symmetry breaking scale and the Planck mass. Using the
macroscopic stability conditions formulated by Carter, we observe that the
coupling to gravity allows for a new stable region that is not present in the
flat space-time limit. We match the asymptotic metric to the Kasner metric and
show that the relations between the Kasner coefficients and the energy per unit
length and tension suggested previously are well fulfilled for symmetry
breaking scale much smaller than the Planck mass. We also study the solutions
to the geodesic equation in this space-time. While geodesics in the exterior
space-time of standard cosmic strings are just straight lines, test particles
experience a force in a general Kasner space-time and as such bound orbits are
possible.Comment: 16 pages including 14 figure
Cosmic Vortons and Particle Physics Constraints
We investigate the cosmological consequences of particle physics theories
that admit stable loops of superconducting cosmic string - {\it vortons}.
General symmetry breaking schemes are considered, in which strings are formed
at one energy scale and subsequently become superconducting in a secondary
phase transition at what may be a considerably lower energy scale. We estimate
the abundances of the ensuing vortons, and thereby derive constraints on the
relevant particle physics models from cosmological observations. These
constraints significantly restrict the category of admissible Grand Unified
theories, but are quite compatible with recently proposed effects whereby
superconducting strings may have been formed close to the electroweak phase
transition.Comment: 33 pages, 2 figures, RevTe
Shock propagation and stability in causal dissipative hydrodynamics
We studied the shock propagation and its stability with the causal
dissipative hydrodynamics in 1+1 dimensional systems. We show that the presence
of the usual viscosity is not enough to stabilize the solution. This problem is
solved by introducing an additional viscosity which is related to the
coarse-graining scale of the theory.Comment: 14 pages, 16 figure
Vortex in a weakly relativistic Bose gas at zero temperature and relativistic fluid approximation
The Bogoliubov procedure in quantum field theory is used to describe a
relativistic almost ideal Bose gas at zero temperature. Special attention is
given to the study of a vortex. The radius of the vortex in the field
description is compared to that obtained in the relativistic fluid
approximation. The Kelvin waves are studied and, for long wavelengths, the
dispersion relation is obtained by an asymptotic matching method and compared
with the non relativistic result.Comment: 20 page
- …