12 research outputs found

    Rigidity and stability of cold dark solid universe model

    Full text link
    Observational evidence suggests that the large scale dynamics of the universe is presently dominated by dark energy, meaning a non-luminous cosmological constituent with a negative value of the pressure to density ratio w=P/ρw=P/\rho, which would be unstable if purely fluid, but could be stable if effectively solid with sufficient rigidity. It was suggested by Bucher and Spergel that such a solid constituent might be constituted by an effectively cold (meaning approximately static) distribution of cosmic strings with w=1/3w=-1/3, or membranes with the observationally more favoured value w=2/3w=-2/3, but it was not established whether the rigidity in such models actually would be sufficient for stabilisation. The present article provides an explicit evaluation of the rigidity to density ratio, which is shown to be given in both string and membrane cases by μ/ρ=4/15\mu/\rho=4/15, and it is confirmed that this is indeed sufficient for stabilisation.Comment: 6 pages latex, revised version extended to include 4 figure

    Relativistic mechanics of neutron superfluid in (magneto) elastic star crust

    Get PDF
    At densities below the neutron drip threshold, a purely elastic solid model (including, if necessary, a frozen-in magnetic field) can provide an adequate description of a neutron star crust, but at higher densities it will be necessary to allow for the penetration of the solid lattice by an independently moving current of superfluid neutrons. In order to do this, the previously available category of relativistic elasticity models is combined here with a separately developed category of relativistic superfluidity models in a unified treatment based on the use of an appropriate Lagrangian master function. As well as models of the purely variational kind, in which the vortices flow freely with the fluid, such a master function also provides a corresponding category of non-dissipative models in which the vortices are pinned to the solid structure

    Covariant Newtonian and relativistic dynamics of (magneto)-elastic solid model for neutron star crust

    Full text link
    This work develops the dynamics of a perfectly elastic solid model for application to the outer crust of a magnetised neutron star. Particular attention is given to the Noether identities responsible for energy-momentum conservation, using a formulation that is fully covariant, not only (as is usual) in a fully relativistic treatment but also (sacrificing accuracy and elegance for economy of degrees of gravitational freedom) in the technically more complicated case of the Newtonian limit. The results are used to obtain explicit (relativistic and Newtonian) formulae for the propagation speeds of generalised (Alfven type) magneto-elastic perturbation modes.info:eu-repo/semantics/publishe

    Immunomodulator effects on the Friend virus infection in genetically defined mice

    Full text link
    Friend virus infection of adult immunocompetent mice is a well established model for studying genetic resistance to infection by an immunosuppressive retrovirus. This paper reviews both the genetics of immune resistance and the types of immune responses required for recovery from infection. Specific major histocompatibility complex (MHC) class I and II alleles are necessary for recovery, as is a non-MHC gene, Rfv-3, which controls virus-specific antibody responses. In concordance with these genetic requirements are immunological requirements for cytotoxic T lymphocyte, T helper, and antibody responses, each of which provides essential nonoverlapping functions. The complexity of responses necessary for recovery from Friend virus infection has implications for both immunotherapies and vaccines. For example, it is shown that successful passive antibody therapy is dependent on MHC type because of the requirement for T cell responses. For vaccines, successful immunization requires priming of both T cell and B cell responses. In vivo depletion experiments demonstrate different requirements for CD8+ T cells depending on the vaccine used. The implications of these studies for human retroviral diseases are discussed
    corecore