50 research outputs found

    Frontal alpha oscillations distinguish leaders from followers: Multivariate decoding of mutually interacting brains

    Get PDF
    Successful social interactions rely upon the abilities of two or more people to mutually exchange information in real-time, while simultaneously adapting to one another. The neural basis of social cognition has mostly been investigated in isolated individuals, and more recently using two-person paradigms to quantify the neuronal dynamics underlying social interaction. While several studies have shown the relevance of understanding complementary and mutually adaptive processes, the neural mechanisms underlying such coordinative behavioral patterns during joint action remain largely unknown. Here, we employed a synchronized finger-tapping task while measuring dual-EEG from pairs of human participants who either mutually adjusted to each other in an interactive task or followed a computer metronome. Neurophysiologically, the interactive condition was characterized by a stronger suppression of alpha and low-beta oscillations over motor and frontal areas in contrast to the non-interactive computer condition. A multivariate analysis of two-brain activity to classify interactive versus non-interactive trials revealed asymmetric patterns of the frontal alpha-suppression in each pair, during both task anticipation and execution, such that only one member showed the frontal component. Analysis of the behavioral data showed that this distinction coincided with the leader–follower relationship in 8/9 pairs, with the leaders characterized by the stronger frontal alpha-suppression. This suggests that leaders invest more resources in prospective planning and control. Hence our results show that the spontaneous emergence of leader–follower relationships in dyadic interactions can be predicted from EEG recordings of brain activity prior to and during interaction. Furthermore, this emphasizes the importance of investigating complementarity in joint action

    Proteome Analysis of Pod and Seed Development in the Model Legume Lotus japonicus

    Get PDF
    Legume pods serve important functions during seed development and are themselves sources of food and feed. Compared to seeds, the metabolism and development of pods are not well-defined. The present characterization of pods from the model legume Lotus japonicus, together with the detailed analyses of the pod and seed proteomes in five developmental stages, paves the way for comparative pathway analysis and provides new metabolic information. Proteins were analyzed by two-dimensional gel electrophoresis and tandem-mass spectrometry. These analyses lead to the identification of 604 pod proteins and 965 seed proteins, including 263 proteins distinguishing the pod. The complete data set is publicly available at http://www.cbs.dtu.dk/cgi-bin/lotus/db.cgi, where spots in a reference map are linked to experimental data, such as matched peptides, quantification values, and gene accessions. Identified pod proteins represented enzymes from 85 different metabolic pathways, including storage globulins and a late embryogenesis abundant protein. In contrast to seed maturation, pod maturation was associated with decreasing total protein content, especially proteins involved in protein biosynthesis and photosynthesis. Proteins detected only in pods included three enzymes participating in the urea cycle and four in nitrogen and amino group metabolism, highlighting the importance of nitrogen metabolism during pod development. Additionally, five legume seed proteins previously unassigned in the glutamate metabolism pathway were identified

    Identification of Potential Sites for Tryptophan Oxidation in Recombinant Antibodies Using tert-Butylhydroperoxide and Quantitative LC-MS

    Get PDF
    Amino acid oxidation is known to affect the structure, activity, and rate of degradation of proteins. Methionine oxidation is one of the several chemical degradation pathways for recombinant antibodies. In this study, we have identified for the first time a solvent accessible tryptophan residue (Trp-32) in the complementary-determining region (CDR) of a recombinant IgG1 antibody susceptible to oxidation under real-time storage and elevated temperature conditions. The degree of light chain Trp-32 oxidation was found to be higher than the oxidation level of the conserved heavy chain Met-429 and the heavy chain Met-107 of the recombinant IgG1 antibody HER2, which have already been identified as being solvent accessible and sensitive to chemical oxidation. In order to reduce the time for simultaneous identification and functional evaluation of potential methionine and tryptophan oxidation sites, a test system employing tert-butylhydroperoxide (TBHP) and quantitative LC-MS was developed. The optimized oxidizing conditions allowed us to specifically oxidize the solvent accessible methionine and tryptophan residues that displayed significant oxidation in the real-time stability and elevated temperature study. The achieved degree of tryptophan oxidation was adequate to identify the functional consequence of the tryptophan oxidation by binding studies. In summary, the here presented approach of employing TBHP as oxidizing reagent combined with quantitative LC-MS and binding studies greatly facilitates the efficient identification and functional evaluation of methionine and tryptophan oxidation sites in the CDR of recombinant antibodies
    corecore