174 research outputs found

    Learning a Partitioning Advisor with Deep Reinforcement Learning

    Full text link
    Commercial data analytics products such as Microsoft Azure SQL Data Warehouse or Amazon Redshift provide ready-to-use scale-out database solutions for OLAP-style workloads in the cloud. While the provisioning of a database cluster is usually fully automated by cloud providers, customers typically still have to make important design decisions which were traditionally made by the database administrator such as selecting the partitioning schemes. In this paper we introduce a learned partitioning advisor for analytical OLAP-style workloads based on Deep Reinforcement Learning (DRL). The main idea is that a DRL agent learns its decisions based on experience by monitoring the rewards for different workloads and partitioning schemes. We evaluate our learned partitioning advisor in an experimental evaluation with different databases schemata and workloads of varying complexity. In the evaluation, we show that our advisor is not only able to find partitionings that outperform existing approaches for automated partitioning design but that it also can easily adjust to different deployments. This is especially important in cloud setups where customers can easily migrate their cluster to a new set of (virtual) machines

    The End of a Myth: Distributed Transactions Can Scale

    Full text link
    The common wisdom is that distributed transactions do not scale. But what if distributed transactions could be made scalable using the next generation of networks and a redesign of distributed databases? There would be no need for developers anymore to worry about co-partitioning schemes to achieve decent performance. Application development would become easier as data placement would no longer determine how scalable an application is. Hardware provisioning would be simplified as the system administrator can expect a linear scale-out when adding more machines rather than some complex sub-linear function, which is highly application specific. In this paper, we present the design of our novel scalable database system NAM-DB and show that distributed transactions with the very common Snapshot Isolation guarantee can indeed scale using the next generation of RDMA-enabled network technology without any inherent bottlenecks. Our experiments with the TPC-C benchmark show that our system scales linearly to over 6.5 million new-order (14.5 million total) distributed transactions per second on 56 machines.Comment: 12 page

    Towards Multi-Modal DBMSs for Seamless Querying of Texts and Tables

    Full text link
    In this paper, we propose Multi-Modal Databases (MMDBs), which is a new class of database systems that can seamlessly query text and tables using SQL. To enable seamless querying of textual data using SQL in an MMDB, we propose to extend relational databases with so-called multi-modal operators (MMOps) which are based on the advances of recent large language models such as GPT-3. The main idea of MMOps is that they allow text collections to be treated as tables without the need to manually transform the data. As we show in our evaluation, our MMDB prototype can not only outperform state-of-the-art approaches such as text-to-table in terms of accuracy and performance but it also requires significantly less training data to fine-tune the model for an unseen text collection

    The End of Slow Networks: It's Time for a Redesign

    Full text link
    Next generation high-performance RDMA-capable networks will require a fundamental rethinking of the design and architecture of modern distributed DBMSs. These systems are commonly designed and optimized under the assumption that the network is the bottleneck: the network is slow and "thin", and thus needs to be avoided as much as possible. Yet this assumption no longer holds true. With InfiniBand FDR 4x, the bandwidth available to transfer data across network is in the same ballpark as the bandwidth of one memory channel, and it increases even further with the most recent EDR standard. Moreover, with the increasing advances of RDMA, the latency improves similarly fast. In this paper, we first argue that the "old" distributed database design is not capable of taking full advantage of the network. Second, we propose architectural redesigns for OLTP, OLAP and advanced analytical frameworks to take better advantage of the improved bandwidth, latency and RDMA capabilities. Finally, for each of the workload categories, we show that remarkable performance improvements can be achieved

    COSTREAM: Learned Cost Models for Operator Placement in Edge-Cloud Environments

    Full text link
    In this work, we present COSTREAM, a novel learned cost model for Distributed Stream Processing Systems that provides accurate predictions of the execution costs of a streaming query in an edge-cloud environment. The cost model can be used to find an initial placement of operators across heterogeneous hardware, which is particularly important in these environments. In our evaluation, we demonstrate that COSTREAM can produce highly accurate cost estimates for the initial operator placement and even generalize to unseen placements, queries, and hardware. When using COSTREAM to optimize the placements of streaming operators, a median speed-up of around 21x can be achieved compared to baselines.Comment: This paper has been accepted by IEEE ICDE 202

    AnyDB: An Architecture-less DBMS for Any Workload

    Full text link
    In this paper, we propose a radical new approach for scale-out distributed DBMSs. Instead of hard-baking an architectural model, such as a shared-nothing architecture, into the distributed DBMS design, we aim for a new class of so-called architecture-less DBMSs. The main idea is that an architecture-less DBMS can mimic any architecture on a per-query basis on-the-fly without any additional overhead for reconfiguration. Our initial results show that our architecture-less DBMS AnyDB can provide significant speed-ups across varying workloads compared to a traditional DBMS implementing a static architecture.Comment: Submitted to 11th Annual Conference on Innovative Data Systems Research (CIDR 21

    FITing-Tree: A Data-aware Index Structure

    Full text link
    Index structures are one of the most important tools that DBAs leverage to improve the performance of analytics and transactional workloads. However, building several indexes over large datasets can often become prohibitive and consume valuable system resources. In fact, a recent study showed that indexes created as part of the TPC-C benchmark can account for 55% of the total memory available in a modern DBMS. This overhead consumes valuable and expensive main memory, and limits the amount of space available to store new data or process existing data. In this paper, we present FITing-Tree, a novel form of a learned index which uses piece-wise linear functions with a bounded error specified at construction time. This error knob provides a tunable parameter that allows a DBA to FIT an index to a dataset and workload by being able to balance lookup performance and space consumption. To navigate this tradeoff, we provide a cost model that helps determine an appropriate error parameter given either (1) a lookup latency requirement (e.g., 500ns) or (2) a storage budget (e.g., 100MB). Using a variety of real-world datasets, we show that our index is able to provide performance that is comparable to full index structures while reducing the storage footprint by orders of magnitude.Comment: 18 page

    An End-to-end Neural Natural Language Interface for Databases

    Full text link
    The ability to extract insights from new data sets is critical for decision making. Visual interactive tools play an important role in data exploration since they provide non-technical users with an effective way to visually compose queries and comprehend the results. Natural language has recently gained traction as an alternative query interface to databases with the potential to enable non-expert users to formulate complex questions and information needs efficiently and effectively. However, understanding natural language questions and translating them accurately to SQL is a challenging task, and thus Natural Language Interfaces for Databases (NLIDBs) have not yet made their way into practical tools and commercial products. In this paper, we present DBPal, a novel data exploration tool with a natural language interface. DBPal leverages recent advances in deep models to make query understanding more robust in the following ways: First, DBPal uses a deep model to translate natural language statements to SQL, making the translation process more robust to paraphrasing and other linguistic variations. Second, to support the users in phrasing questions without knowing the database schema and the query features, DBPal provides a learned auto-completion model that suggests partial query extensions to users during query formulation and thus helps to write complex queries
    • …
    corecore