30 research outputs found

    DEPTOR Is an mTOR Inhibitor Frequently Overexpressed in Multiple Myeloma Cells and Required for Their Survival

    Get PDF
    The mTORC1 and mTORC2 pathways regulate cell growth, proliferation, and survival. We identify DEPTOR as an mTOR-interacting protein whose expression is negatively regulated by mTORC1 and mTORC2. Loss of DEPTOR activates S6K1, Akt, and SGK1, promotes cell growth and survival, and activates mTORC1 and mTORC2 kinase activities. DEPTOR overexpression suppresses S6K1 but, by relieving feedback inhibition from mTORC1 to PI3K signaling, activates Akt. Consistent with many human cancers having activated mTORC1 and mTORC2 pathways, DEPTOR expression is low in most cancers. Surprisingly, DEPTOR is highly overexpressed in a subset of multiple myelomas harboring cyclin D1/D3 or c-MAF/MAFB translocations. In these cells, high DEPTOR expression is necessary to maintain PI3K and Akt activation and a reduction in DEPTOR levels leads to apoptosis. Thus, we identify a novel mTOR-interacting protein whose deregulated overexpression in multiple myeloma cells represents a mechanism for activating PI3K/Akt signaling and promoting cell survival.Howard Hughes Medical Institute (Investigator)Dana-Farber Cancer Institute (High-Tech Research Fund)National Cancer Institute (U.S.)National Institutes of Health (U.S.) (Intramural Research Program)American Cancer SocietyCanadian Institutes of Health Research (Fellowship)American Diabetes Association (Fellowship)W. M. Keck FoundationNational Institutes of Health (U.S.) (R01 CA103866)National Institutes of Health (U.S.) (NIH; R01 AI47389

    ERK and p38 MAPK Activities Determine Sensitivity to PI3K/mTOR Inhibition via Regulation of MYC and YAP

    Get PDF
    Aberrant activation of the PI3K/mTOR pathway is a common feature of many cancers and an attractive target for therapy, but resistance inevitably evolves as is the case for any cancer cell-targeted therapy. In animal tumor models, chronic inhibition of PI3K/mTOR initially inhibits tumor growth, but over time, tumor cells escape inhibition. In this study, we identified a context-dependent mechanism of escape whereby tumor cells upregulated the proto-oncogene transcriptional regulators c-MYC and YAP1. This mechanism was dependent on both constitutive ERK activity as well as inhibition of the stress kinase p38. Inhibition of p38 relieved proliferation arrest and allowed upregulation of MYC and YAP through stabilization of CREB. These data provide new insights into cellular signaling mechanisms that influence resistance to PI3K/mTOR inhibitors. Furthermore, they suggest that therapies that inactivate YAP or MYC or augment p38 activity could enhance the efficacy of PI3K/mTOR inhibitors.National Institutes of Health (U.S.) (Grant R01CA103866)National Institutes of Health (U.S.) (Grant AI47389

    Characterization of Torin2, an ATP-Competitive Inhibitor of mTOR, ATM, and ATR

    Get PDF
    mTOR is a highly conserved serine/threonine protein kinase that serves as a central regulator of cell growth, survival, and autophagy. Deregulation of the PI3K/Akt/mTOR signaling pathway occurs commonly in cancer and numerous inhibitors targeting the ATP-binding site of these kinases are currently undergoing clinical evaluation. Here, we report the characterization of Torin2, a second-generation ATP-competitive inhibitor that is potent and selective for mTOR with a superior pharmacokinetic profile to previous inhibitors. Torin2 inhibited mTORC1-dependent T389 phosphorylation on S6K (RPS6KB1) with an EC[subscript 50] of 250 pmol/L with approximately 800-fold selectivity for cellular mTOR versus phosphoinositide 3-kinase (PI3K). Torin2 also exhibited potent biochemical and cellular activity against phosphatidylinositol-3 kinase–like kinase (PIKK) family kinases including ATM (EC[subscript 50], 28 nmol/L), ATR (EC[subscript 50], 35 nmol/L), and DNA-PK (EC[subscript 50], 118 nmol/L; PRKDC), the inhibition of which sensitized cells to Irradiation. Similar to the earlier generation compound Torin1 and in contrast to other reported mTOR inhibitors, Torin2 inhibited mTOR kinase and mTORC1 signaling activities in a sustained manner suggestive of a slow dissociation from the kinase. Cancer cell treatment with Torin2 for 24 hours resulted in a prolonged block in negative feedback and consequent T308 phosphorylation on Akt. These effects were associated with strong growth inhibition in vitro. Single-agent treatment with Torin2 in vivo did not yield significant efficacy against KRAS-driven lung tumors, but the combination of Torin2 with mitogen-activated protein/extracellular signal–regulated kinase (MEK) inhibitor AZD6244 yielded a significant growth inhibition. Taken together, our findings establish Torin2 as a strong candidate for clinical evaluation in a broad number of oncologic settings where mTOR signaling has a pathogenic role

    The molecular basis of mTORC1-regulated translation

    No full text
    The mammalian target of rapamycin (mTOR) signaling pathway is a master regulator of cell growth throughout eukaryotes. The pathway senses nutrient and other growth signals, and then orchestrates the complex systems of anabolic and catabolic metabolism that underpin the growth process. A central target of mTOR signaling is the translation machinery. mTOR uses a multitude of translation factors to drive the bulk production of protein that growth requires, but also to direct a post-transcriptional program of growth-specific gene expression. This review will discuss current understanding of how mTOR controls these mechanisms and their functions in growth control

    Rapamycin inhibits mTORC1, but not completely

    No full text
    Rapamycin is widely used as a complete inhibitor of the mTORC1 nutrient-sensitive signaling complex. Using a novel ATP-competitive inhibitor named Torin1, we have found that many mTORC1 functions that regulate cap-dependent translation and autophagy are resistant to inhibition by rapamycin

    mRNA 5' terminal sequences drive 200-fold differences in expression through effects on synthesis, translation and decay.

    No full text
    mRNA regulatory sequences control gene expression at multiple levels including translation initiation and mRNA decay. The 5' terminal sequences of mRNAs have unique regulatory potential because of their proximity to key post-transcriptional regulators. Here we have systematically probed the function of 5' terminal sequences in gene expression in human cells. Using a library of reporter mRNAs initiating with all possible 7-mer sequences at their 5' ends, we find an unexpected impact on transcription that underlies 200-fold differences in mRNA expression. Library sequences that promote high levels of transcription mirrored those found in native mRNAs and define two basic classes with similarities to classic Initiator (Inr) and TCT core promoter motifs. By comparing transcription, translation and decay rates, we identify sequences that are optimized for both efficient transcription and growth-regulated translation and stability, including variants of terminal oligopyrimidine (TOP) motifs. We further show that 5' sequences of endogenous mRNAs are enriched for multi-functional TCT/TOP hybrid sequences. Together, our results reveal how 5' sequences define two general classes of mRNAs with distinct growth-responsive profiles of expression across synthesis, translation and decay
    corecore