34 research outputs found

    Role of Portion Size in the Context of a Healthy, Balanced Diet: A Case Study of European Countries

    Get PDF
    Over the past decades, a generalised increase in food portion sizes has probably contributed to the growing global obesity epidemic. Increasing awareness of appropriate portion sizes could contribute to reversing this trend through better control of calorie intake. In this study, a comparison of standard portion sizes in European countries for various food categories shows a wide variability of their importance for food, nutrient, and energy consumption according to government and institutional websites. On the other hand, the overall averages appear to be largely in line with the values indicated by the Italian Society of Human Nutrition, which is the most comprehensive and detailed document among those evaluated. The exceptions are milk and yoghurt, for which the reference portions in Europe are generally higher, and vegetables and legumes, for which portions are smaller than those reported in the Italian document. Moreover, the portion sizes of staple foods (e.g., pasta and potatoes) vary according to different food traditions. It is reasonable to consider that the creation of harmonised standard reference portions common to the European countries, based on international guidelines and scientific evidence, would significantly contribute to consumers' nutritional education and ability to make informed choices for a healthy diet

    A peculiar formula of essential amino acids prevents rosuvastatin myopathy in mice

    Get PDF
    Aims: Myopathy, characterized by mitochondrial oxidative stress, occurs in ∼10% of statin-treated patients, and a major risk exists with potent statins such as rosuvastatin (Rvs). We sought to determine whether a peculiar branched-chain amino acid-enriched mixture (BCAAem), found to improve mitochondrial function and reduce oxidative stress in muscle of middle-aged mice, was able to prevent Rvs myopathy. Results: Dietary supplementation of BCAAem was able to prevent the structural and functional alterations of muscle induced by Rvs in young mice. Rvs-increased plasma 3-methylhistidine (a marker of muscular protein degradation) was prevented by BCAAem. This was obtained without changes of Rvs ability to reduce cholesterol and triglyceride levels in blood. Rather, BCAAem promotes de novo protein synthesis and reduces proteolysis in cultured myotubes. Morphological alterations of C2C12 cells induced by statin were counteracted by amino acids, as were the Rvs-increased atrogin-1 mRNA and protein levels. Moreover, BCAAem maintained mitochondrial mass and density and citrate synthase activity in skeletal muscle of Rvs-treated mice beside oxygen consumption and ATP levels in C2C12 cells exposed to statin. Notably, BCAAem assisted Rvs to reduce oxidative stress and to increase the anti-reactive oxygen species (ROS) defense system in skeletal muscle. Innovation and Conclusions: The complex interplay between proteostasis and antioxidant properties may underlie the mechanism by which a specific amino acid formula preserves mitochondrial efficiency and muscle health in Rvs-treated mice. Strategies aimed at promoting protein balance and controlling mitochondrial ROS level may be used as therapeutics for the treatment of muscular diseases involving mitochondrial dysfunction, such as statin myopathy

    Defective mitochondrial biogenesis: A hallmark of the high cardiovascular risk in the metabolic syndrome?

    Full text link
    The metabolic syndrome is a group of risk factors of metabolic origin that are accompanied by increased risk for type 2 diabetes mellitus and cardiovascular disease. These risk factors include atherogenic dyslipidemia, elevated blood pressure and plasma glucose, and a prothrombotic and proinflammatory state. The condition is progressive and is exacerbated by physical inactivity, advancing age, hormonal imbalance, and genetic predisposition. The metabolic syndrome is a particularly challenging clinical condition because its complex molecular basis is still largely undefined. Impaired cell metabolism has, however, been suggested as a relevant pathophysiological process underlying several clinical features of the syndrome. In particular, defective oxidative metabolism seems to be involved in visceral fat gain and in the development of insulin resistance in skeletal muscle. This suggests that mitochondrial function may be impaired in the metabolic syndrome and, thus, in the consequent cardiovascular disease. We have recently found that mitochondrial biogenesis and function are enhanced by nitric oxide in various cell types and tissues, including cardiac muscle. Increasing evidence suggests that this mediator acts as a metabolic sensor in cardiomyocytes. This implies that a defective production of nitric oxide might be linked to dysfunction of the cardiomyocyte metabolism. Here we summarize some recent findings and propose a hypothesis for the high cardiovascular risk linked to the metabolic syndrome

    Polycystic Ovary Syndrome: Insights into the Therapeutic Approach with Inositols

    Full text link
    Polycystic ovary syndrome (PCOS) is characterized by hormonal abnormalities that cause menstrual irregularity and reduce ovulation rate and fertility, associated to insulin resistance. Myo-inositol (cis-1,2,3,5-trans-4,6-cyclohexanehexol, MI) and D-chiro-inositol (cis-1,2,4-trans-3,5,6-cyclohexanehexol, DCI) represent promising treatments for PCOS, having shown some therapeutic benefits without substantial side effects. Because the use of inositols for treating PCOS is widespread, a deep understanding of this treatment option is needed, both in terms of potential mechanisms and efficacy. This review summarizes the current knowledge on the biological effects of MI and DCI and the results obtained from relevant intervention studies with inositols in PCOS. Based on the published results, both MI and DCI represent potential valid therapeutic approaches for the treatment of insulin resistance and its associated metabolic and reproductive disorders, such as those occurring in women affected by PCOS. Furthermore, the combination MI/DCI seems also effective and might be even superior to either inositol species alone. However, based on available data, a particular MI:DCI ratio to be administered to PCOS patients cannot be established. Further studies are then necessary to understand the real contents of MI or DCI uptaken by the ovary following oral administration in order to identify optimal doses and/or combination ratios

    The relationship between air pollution and diabetes: a study on the Municipalities of the Metropolitan City of Milan

    Full text link
    AIMS: Urbanisation has been linked with an increased risk of developing diabetes mellitus, dramatically worsening the healthcare system's financial burden. Environmental influences are emerging among the causing factors of the urban diabetes epidemic. We evaluated the relationship between air pollution and the prevalence of diabetes in the Municipalities of the Metropolitan City of Milan, comprising more than 3,4 million citizens.METHODS: The prevalence of diabetes in the resident population and the mean annual air concentrations of PM10 and NO2 were retrieved from the municipal Agency for Health Protection and the regional Agency for Ambient Protection datasets. Two linear regression models were estimated to inspect the relationships between the (logit-based transformed) diabetes prevalence and air pollution concentrations, namely: (i) PM10, and (ii) NO2. Both models were adjusted for five control variables, including the qualitative variable year (2011-2018).RESULTS: Both models highlight a statistically significant positive relationship between air pollutants and diabetes prevalence. An increase of one PM10 or NO2 concentrations' unit translates into a rise of 0.81% or 0.41% in diabetes prevalence, respectively.CONCLUSION: Our results contribute to the ongoing research regarding health outcomes of urbanisation dynamics and should be considered in city planning policies

    A designer mixture of six amino acids promotes the extracellular matrix gene expression in cultured human fibroblasts

    Full text link
    The deterioration of the skin is caused by dermatological disorders, environmental conditions, and aging processes. One incisive strategy for supervising the skin aging process is implementing healthy nutrition, preserving a balanced diet, and a good supply of food supplements. Here, we compared H-Pro-Hyp-OH peptide, hydrolyzed collagen, and an original mixture of six amino acids (we named 6aa)-including glycine, l-alanine, l-proline, l-valine, l-leucine, and l-lysine-effects on the production of extracellular matrix (ECM) components, particularly the elastin, fibronectin, collagen 1, and collagen 4. Treatment of BJ human skin fibroblasts with the 6aa mixture upregulated elastin, fibronectin, and collagen 1 gene expression, without affecting the expression of anti-reactive oxygen species enzymes. Moreover, the mammalian target of rapamycin (mTOR) signaling pathway seems to be involved, at least in part. Collectively, these results suggest that the six amino acid mixture exerts beneficial effects in human skin fibroblasts

    Amino acids contribute to adaptive thermogenesis. New insights into the mechanisms of action of recent drugs for metabolic disorders are emerging

    Full text link
    Adaptive thermogenesis is the heat production by muscle contractions (shivering thermogenesis) or brown adipose tissue (BAT) and beige fat (non-shivering thermogenesis) in response to external stimuli, including cold exposure. BAT and beige fat communicate with peripheral organs and the brain through a variegate secretory and absorption processes − controlling adipokines, microRNAs, extracellular vesicles, and metabolites − and have received much attention as potential therapeutic targets for managing obesity-related disorders. The sympathetic nervous system and norepinephrine-releasing adipose tissue macrophages (ATM) activate uncoupling protein 1 (UCP1), expressed explicitly in brown and beige adipocytes, dissolving the electrochemical gradient and uncoupling tricarboxylic acid cycle and the electron transport chain from ATP production. Mounting evidence has attracted attention to the multiple effects of dietary and endogenously synthesised amino acids in BAT thermogenesis and metabolic phenotype in animals and humans. However, the mechanisms implicated in these processes have yet to be conclusively characterized. In the present review article, we aim to define the principal investigation areas in this context, including intestinal microbiota constitution, adipose autophagy modulation, and secretome and metabolic fluxes control, which lead to increased brown/beige thermogenesis. Finally, also based on our recent epicardial adipose tissue results, we summarise the evidence supporting the notion that the new dual and triple agonists of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon (GCG) receptor − with never before seen weight loss and insulin-sensitizing efficacy − promote thermogenic-like amino acid profiles in BAT with robust heat production and likely trigger sympathetic activation and adaptive thermogenesis by controlling amino acid metabolism and ATM expansion in BAT and beige fat

    Preferential Channeling of Energy Fuels Toward Fat Rather Than Muscle During High Free Fatty Acid Availability in Rats

    Get PDF
    The preferential channeling of different fuels to fat and changes in the transcription profile of adipose tissue and skeletal muscle are poorly understood processes involved in the pathogenesis of obesity and insulin resistance. Carbohydrate and lipid metabolism may play relevant roles in this context. Freely moving lean Zucker rats received 3- and 24-h infusions of Intralipid (Pharmacia and Upjohn, Milan, Italy) plus heparin, or saline plus heparin, to evaluate how an increase in free fatty acids (nonesterified fatty acid [NEFA]) modulates fat tissue and skeletal muscle gene expression and thus influences fuel partitioning. Glucose uptake was determined in various tissues at the end of the infusion period by means of the 2-deoxy-[1-3H]-d-glucose technique after a euglycemic-hyperinsulinemic clamp: high NEFA levels markedly decreased insulin-mediated glucose uptake in red fiber–type muscles but enhanced glucose utilization in visceral fat. Using reverse transcriptase–polymerase chain reaction and Northern blotting analyses, the mRNA expression of fatty acid translocase (FAT)/CD36, GLUT4, tumor necrosis factor (TNF)-α, peroxisome proliferator–activated receptor (PPAR)-γ, leptin, uncoupling protein (UCP)-2, and UCP-3 was investigated in different fat depots and skeletal muscles before and after the study infusions. GLUT4 mRNA levels significantly decreased (by ∼25%) in red fiber–type muscle (soleus) and increased (by ∼45%) in visceral adipose tissue. Furthermore, there were marked increases in FAT/CD36, TNF-α, PPAR-γ, leptin, UCP2, and UCP3 mRNA levels in the visceral fat and muscle of the treated animals in comparison with those measured in the saline-treated animals. These data suggest that the in vivo gene expression of FAT/CD36, GLUT4, TNF-α, PPAR-γ, leptin, UCP2, and UCP3 in visceral fat and red fiber–type muscle are differently regulated by circulating lipids and that selective insulin resistance seems to favor, at least in part, a prevention of fat accumulation in tissues not primarily destined for fat storage, thus contributing to increased adiposity and the development of a prediabetic syndrome
    corecore