97 research outputs found

    CosmoTransitions: Computing Cosmological Phase Transition Temperatures and Bubble Profiles with Multiple Fields

    Full text link
    I present a numerical package (CosmoTransitions) for analyzing finite-temperature cosmological phase transitions driven by single or multiple scalar fields. The package analyzes the different vacua of a theory to determine their critical temperatures (where the vacuum energy levels are degenerate), their super-cooling temperatures, and the bubble wall profiles which separate the phases and describe their tunneling dynamics. I introduce a new method of path deformation to find the profiles of both thin- and thick-walled bubbles. CosmoTransitions is freely available for public use.Comment: 9 figure

    Cosmological Phase Transitions and their Properties in the NMSSM

    Full text link
    We study cosmological phase transitions in the Next-to-Minimal Supersymmetric Standard Model (NMSSM) in light of the Higgs discovery. We use an effective field theory approach to calculate the finite temperature effective potential, focusing on regions with significant tree-level contributions to the Higgs mass, a viable neutralino dark matter candidate, 1-2 TeV stops, and with the remaining particle spectrum compatible with current LHC searches and results. The phase transition structure in viable regions of parameter space exhibits a rich phenomenology, potentially giving rise to one- or two-step first-order phase transitions in the singlet and/or SU(2)SU(2) directions. We compute several parameters pertaining to the bubble wall profile, including the bubble wall width and Δβ\Delta\beta (the variation of the ratio in Higgs vacuum expectation values across the wall). These quantities can vary significantly across small regions of parameter space and can be promising for successful electroweak baryogenesis. We estimate the wall velocity microphysically, taking into account the various sources of friction acting on the expanding bubble wall. Ultra-relativistic solutions to the bubble wall equations of motion typically exist when the electroweak phase transition features substantial supercooling. For somewhat weaker transitions, the bubble wall instead tends to be sub-luminal and, in fact, likely sub-sonic, suggesting that successful electroweak baryogenesis may indeed occur in regions of the NMSSM compatible with the Higgs discovery.Comment: 49 pages + 2 appendices, 6 figures. v2: Minor corrections; matches version published in JHE

    Simulating the universe(s): from cosmic bubble collisions to cosmological observables with numerical relativity

    Full text link
    The theory of eternal inflation in an inflaton potential with multiple vacua predicts that our universe is one of many bubble universes nucleating and growing inside an ever-expanding false vacuum. The collision of our bubble with another could provide an important observational signature to test this scenario. We develop and implement an algorithm for accurately computing the cosmological observables arising from bubble collisions directly from the Lagrangian of a single scalar field. We first simulate the collision spacetime by solving Einstein's equations, starting from nucleation and ending at reheating. Taking advantage of the collision's hyperbolic symmetry, simulations are performed with a 1+1-dimensional fully relativistic code that uses adaptive mesh refinement. We then calculate the comoving curvature perturbation in an open Friedmann-Robertson-Walker universe, which is used to determine the temperature anisotropies of the cosmic microwave background radiation. For a fiducial Lagrangian, the anisotropies are well described by a power law in the cosine of the angular distance from the center of the collision signature. For a given form of the Lagrangian, the resulting observational predictions are inherently statistical due to stochastic elements of the bubble nucleation process. Further uncertainties arise due to our imperfect knowledge about inflationary and pre-recombination physics. We characterize observational predictions by computing the probability distributions over four phenomenological parameters which capture these intrinsic and model uncertainties. This represents the first fully-relativistic set of predictions from an ensemble of scalar field models giving rise to eternal inflation, yielding significant differences from previous non-relativistic approximations. Thus, our results provide a basis for a rigorous confrontation of these theories with cosmological data.Comment: 52 pages, 23 figures. A four page summary of methods and results follows the introduction. Version 2 contains minor clarifications and edits to match the version accepted for publication by JCAP. Version 3 fixes a typo in Eq. 3.10 and a typo in the paragraph after Eq. 5.27. All other text, including results, remains the sam

    Supersymmetric Electroweak Baryogenesis Via Resonant Sfermion Sources

    Get PDF
    We calculate the baryon asymmetry produced at the electroweak phase transition by quasi-degenerate third generation sfermions in the minimal supersymmetric extension of the Standard Model. We evaluate constraints from Higgs searches, from collider searches for supersymmetric particles, and from null searches for the permanent electric dipole moment (EDM) of the electron, of the neutron and of atoms. We find that resonant sfermion sources can in principle provide a large enough baryon asymmetry in various corners of the sfermion parameter space, and we focus, in particular, on the case of large tanβ\tan\beta, where third-generation down-type (s)fermions become relevant. We show that in the case of stop and sbottom sources, the viable parameter space is ruled out by constraints from the non-observation of the Mercury EDM. We introduce a new class of CP violating sources, quasi-degenerate staus, that escapes current EDM constraints while providing large enough net chiral currents to achieve successful "slepton-mediated" electroweak baryogenesis.Comment: 35 pages, 9 figures; v2: several revisions, but conclusions unchanged. Matches version published in PR

    Accidental Supersymmetric Dark Matter and Baryogenesis

    Full text link
    We show that "accidental" supersymmetry is a beyond-the-Standard Model framework that naturally accommodates a thermal relic dark matter candidate and successful electroweak baryogenesis, including the needed strongly first-order character of the electroweak phase transition. We study the phenomenology of this setup from the standpoint of both dark matter and baryogenesis. For energies around the electroweak phase transition temperature, the low-energy effective theory is similar to the MSSM with light super-partners of the third-generation quarks and of the Higgs and gauge bosons. We calculate the dark matter relic abundance and the baryon asymmetry across the accidental supersymmetry parameter space, including resonant and non-resonant CP-violating sources. We find that there are regions of parameter space producing both the observed value of the baryon asymmetry and a dark matter candidate with the correct relic density and conforming to present-day constraints from dark matter searches. This scenario makes sharp predictions for the particle spectrum, predicting a lightest neutralino mass between 200 and 500 GeV, with all charginos and neutralinos within less than a factor 2 of the lightest neutralino mass and the heavy Higgs sector within 20-25% of that mass, making it an interesting target for collider searches. In addition, we demonstrate that successful accidental supersymmetric dark matter and baryogenesis will be conclusively tested with improvements smaller than one order of magnitude to the current performance of electron electric dipole moment searches and of direct dark matter searches, as well as with IceCube plus Deep Core neutrino telescope data.Comment: 36 pages, 10 figure

    Oscillatory behavior of closed isotropic models in second order gravity theory

    Full text link
    Homogeneous and isotropic models are studied in the Jordan frame of the second order gravity theory. The late time evolution of the models is analysed with the methods of the dynamical systems. The normal form of the dynamical system has periodic solutions for a large set of initial conditions. This implies that an initially expanding closed isotropic universe may exhibit oscillatory behaviour.Comment: 16 pages, 3 figures. With some minor improvements. To appear in General Relativity and Gravitatio
    corecore