499 research outputs found
Self Interacting Dark Matter in the Solar System
Weakly coupled, almost massless, spin 0 particles have been predicted by many
extensions of the standard model of particle physics. Recently, the PVLAS group
observed a rotation of polarization of electromagnetic waves in vacuum in the
presence of transverse magnetic field. This phenomenon is best explained by the
existence of a weakly coupled light pseudoscalar particle. However, the
coupling required by this experiment is much larger than the conventional
astrophysical limits. Here we consider a hypothetical self-interacting
pseudoscalar particle which couples weakly with visible matter.
Assuming that these pseudoscalars pervade the galaxy, we show that the solar
limits on the pseudoscalar-photon coupling can be evaded.Comment: 17 pages, 2 figure
Gravitational collapse in asymptotically Anti-de Sitter/de Sitter backgrounds
We study here the gravitational collapse of a matter cloud with a
non-vanishing tangential pressure in the presence of a non-zero cosmological
term. Conditions for bounce and singularity formation are derived for the
model. It is also shown that when the tangential pressures vanish, the bounce
and singularity conditions reduce to that of the dust case studied earlier. The
collapsing interior is matched with an exterior which is asymptotically de
Sitter or anti de Sitter, depending on the sign of cosmological constant. The
junction conditions for matching the cloud to exterior are specified. The
effect of the cosmological term on apparent horizons is studied in some detail,
and the nature of central singularity is analyzed. We also discuss here the
visibility of the singularity and implications for the cosmic censorship
conjecture.Comment: 11 pages, 1 figure, Revtex
Exploring the vicinity of the Bogomol'nyi-Prasad-Sommerfield bound
We investigate systems of real scalar fields in bidimensional spacetime,
dealing with potentials that are small modifications of potentials that admit
supersymmetric extensions. The modifications are controlled by a real
parameter, which allows implementing a perturbation procedure when such
parameter is small. The approach allows obtaining the energy and topological
charge in closed forms, up to first order in the parameter. We illustrate the
procedure with some examples. In particular, we show how to remove the
degeneracy in energy for the one-field and the two-field solutions that appear
in a model of two real scalar fields.Comment: Revtex, 9 pages, To be published in J. Phys.
The supersymmetric modified Poschl-Teller and delta-well potentials
New supersymmetric partners of the modified Poschl-Teller and the Dirac's
delta well potentials are constructed in closed form. The resulting
one-parametric potentials are shown to be interrelated by a limiting process.
The range of values of the parameters for which these potentials are free of
singularities is exactly determined. The construction of higher order
supersymmetric partner potentials is also investigated.Comment: 20 pages, LaTeX file, 4 eps figure
Sum Rule Description of Color Transparency
The assumption that a small point-like configuration does not interact with
nucleons leads to a new set of sum rules that are interpreted as models of the
baryon-nucleon interaction. These models are rendered semi-realistic by
requiring consistency with data for cross section fluctuations in proton-proton
diffractive collisions.Comment: 22 pages + 3 postscript figures attache
Neutron star in presence of torsion-dilaton field
We develop the general theory of stars in Saa's model of gravity with
propagating torsion and study the basic stationary state of neutron star. Our
numerical results show that the torsion force decreases the role of the gravity
in the star configuration leading to significant changes in the neutron star
masses depending on the equation of state of star matter. The inconsistency of
the Saa's model with Roll-Krotkov-Dicke and Braginsky-Panov experiments is
discussed.Comment: 29 pages, latex, 24 figures, final version. Added: 1)comments on
different possible mass definitions; 2)new sections: a)the inconsistency of
the Saa's model with Roll-Krotkov-Dicke and Braginsky-Panov experiments;
b)stability analysis via catastrophe theory; 3)new figers added and some
figures replaced. 4)new reference
On the equivalence principle and gravitational and inertial mass relation of classical charged particles
We show that the locally constant force necessary to get a stable hyperbolic
motion regime for classical charged point particles, actually, is a combination
of an applied external force and of the electromagnetic radiation reaction
force. It implies, as the strong Equivalence Principle is valid, that the
passive gravitational mass of a charged point particle should be slight greater
than its inertial mass. An interesting new feature that emerges from the
unexpected behavior of the gravitational and inertial mass relation, for
classical charged particles, at very strong gravitational field, is the
existence of a critical, particle dependent, gravitational field value that
signs the validity domain of the strong Equivalence Principle. For electron and
proton, these critical field values are
and , respectively
Exactly Solvable Hydrogen-like Potentials and Factorization Method
A set of factorization energies is introduced, giving rise to a
generalization of the Schr\"{o}dinger (or Infeld and Hull) factorization for
the radial hydrogen-like Hamiltonian. An algebraic intertwining technique
involving such factorization energies leads to derive -parametric families
of potentials in general almost-isospectral to the hydrogen-like radial
Hamiltonians. The construction of SUSY partner Hamiltonians with ground state
energies greater than the corresponding ground state energy of the initial
Hamiltonian is also explicitly performed.Comment: LaTex file, 21 pages, 2 PostScript figures and some references added.
To be published in J. Phys. A: Math. Gen. (1998
The FeH Wing-Ford Band in Spectra of M Stars
We study the FeH Wing-Ford band at 9850 - 10200 Angstrons by means of the fit
of synthetic spectra to the observations of M stars, employing recent model
atmospheres. On the basis of the spectrum synthesis, we analyze the dependence
of the band upon atmospheric parameters. FeH lines are a very sensitive surface
gravity indicator, being stronger in dwarfs. They are also sensitive to
metallicity (Allard & Hauschildt 1995). The blending with CN lines, which are
stronger in giants, does not affect the response of the Wing-Ford band to
surface gravity at low resolution (or high velocity dispersions) because CN
lines, which are spread all along the spectrum, are smeared out at convolutions
of FWHM \simgreat 3 Angstrons. We conclude that the Wing-Ford band is a
suitable dwarf/giant indicator for the study of composite stellar populations.Comment: 23 pages + 11 figures in postscript format + 3 ps figures (Nos. 2, 6
and 7) available under request to [email protected]. Accepted
for publication in The Astrophysical Journa
- …