3,195 research outputs found

    A General Expression for Symmetry Factors of Feynman Diagrams

    Get PDF
    The calculation of the symmetry factor corresponding to a given Feynman diagram is well known to be a tedious problem. We have derived a simple formula for these symmetry factors. Our formula works for any diagram in scalar theory (Ï•3\phi^3 and Ï•4\phi^4 interactions), spinor QED, scalar QED, or QCD.Comment: RevTex 11 pages with 10 figure

    Spontaneous Symmetry Breaking for Scalar QED with Non-minimal Chern-Simons Coupling

    Get PDF
    We investigate the two-loop effective potential for both minimally and non-minimally coupled Maxwell-Chern-Simons theories. The non-minimal gauge interaction represents the magnetic moment interaction between a charged scalar and the electromagnetic field. In a previous paper we have shown that the two loop effective potential for this model is renormalizable with an appropriate choice of the non-minimal coupling constant. We carry out a detailed analysis of the spontaneous symmetry breaking induced by radiative corrections. As long as the renormalization point for all couplings is chosen to be the true minimum of the effective potential, both models predict the presence of spontaneous symmetry breaking. Two loop corrections are small compared to the one loop result, and thus the symmetry breaking is perturbatively stable.Comment: Revtex 25 pages, 9 figure

    Results from the 4PI Effective Action in 2- and 3-dimensions

    Full text link
    We consider a symmetric scalar theory with quartic coupling and solve the equations of motion from the 4PI effective action in 2- and 3-dimensions using an iterative numerical lattice method. For coupling less than 10 (in dimensionless units) good convergence is obtained in less than 10 iterations. We use lattice size up to 16 in 2-dimensions and 10 in 3-dimensions and demonstrate the convergence of the results with increasing lattice size. The self-consistent solutions for the 2-point and 4-point functions agree well with the perturbative ones when the coupling is small and deviate when the coupling is large.Comment: 14 pages, 11 figures; v5: added numerical calculations in 3D; version accepted for publication in EPJ

    Temperature dependent anisotropy of the penetration depth and coherence length in MgB$_2

    Full text link
    We report measurements of the temperature dependent anisotropies (γλ\gamma_\lambda and γξ\gamma_\xi) of both the London penetration depth λ\lambda and the upper critical field of MgB2_2. Data for γλ=λc/λa\gamma_\lambda=\lambda_c/\lambda_a was obtained from measurements of λa\lambda_{a} and λc\lambda_c on a single crystal sample using a tunnel diode oscillator technique. γξ=Hc2∥c/Hc2⊥c\gamma_\xi=H_{c2}^{\parallel c}/H_{c2}^{\bot c} was deduced from field dependent specific heat measurements on the same sample. γλ\gamma_\lambda and γξ\gamma_\xi have opposite temperature dependencies, but close to TcT_c tend to a common value (γλ≃γξ=1.75±0.05\gamma_\lambda\simeq \gamma_\xi=1.75\pm0.05). These results are in good agreement with theories accounting for the two gap nature of MgB2_2Comment: 4 pages with figures (New version

    Covariant approach to equilibration in effective field theories

    Full text link
    The equilibration of two coupled reservoirs is studied using a Green function approach which is suitable for future development with the closed time path method. The problem is solved in two parameterizations, in order to demonstrate the non-trivial issues of parameterization in both the intermediate steps and the interpretation of physical quantities. We use a covariant approach to find self-consistent solutions for the statistical distributions as functions of time. We show that by formally introducing covariant connections, one can rescale a slowly varying non-equilibrium theory so that it appears to be an equilibrium one, for the purposes of calculation. We emphasize the importance of properly tracking variable redefinitions in order to correctly interpret physical quantities.Comment: 11 pages, Late
    • …
    corecore