52 research outputs found

    Parental divorce among young and adult children: a long-term quantitative analysis of mental health and family solidarity

    Get PDF
    Journal ArticleIn 2008, it was estimated that 40 percent of all marriages ended in divorce (U.S. Census, 2004) . Research has long suggested that the consequences of divorce can be profound for the children of divorced families (Amato, 2000). For example, children who experienced parental divorce were 50 percent more likely to develop health problems than children from intact two parent families (Angel, 1988; Tucker et al., 1997; Strohschei 2005). Similarly, children from divorced families also exhibit poorer academic performance (Astone & McLanahan, 1991; Wolfinger, 2003), delayed psychological development (Kurdek, Fine, & Sinclair,1994), strained relationships with family members (Hurre, 2006; Portman 2009), and poorer mental health (Ängarne-Lindberg, 2009). Some research has focused on the consequences of parental divorce as immediate or short-term consequences that are faced by the children - this is often referred to as a "crisis model"- whereas other research has documented the long-term effects of divorce - this is often referred to as the "chronic strain" model-, those consequences that persist for many years after parental divorce (Amato, 2000). Furthermore, scant research has attempted to isolate the potentially differential experiences of adult children (those who experience parental divorce as adults) compared to those who experience parental divorce earlier in the life course. About 20 percent of divorces occur in couples married over 15 years (Cooney, 1994), suggesting that parental divorce is not isolated to young children only. The purpose of this analysis is to identify whether children exhibited different types of consequences based on the age at which their parents divorced. Specifically, we explore whether the timing of parental divorce has long-term consequences on two distinct outcomes: the child's perceptions of family-solidarity and their mental health status later in life. These two outcomes were chosen because they represent a range of consequences involving both personal mental health and subsequent relationships with family

    Toxicity of CdSe Nanoparticles in Caco-2 Cell Cultures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Potential routes of nanomaterial exposure include inhalation, dermal contact, and ingestion. Toxicology of inhalation of ultra-fine particles has been extensively studied; however, risks of nanomaterial exposure via ingestion are currently almost unknown. Using enterocyte-like Caco-2 cells as a small intestine epithelial model, the possible toxicity of CdSe quantum dot (QD) exposure via ingestion was investigated. Effect of simulated gastric fluid treatment on CdSe QD cytotoxicity was also studied.</p> <p>Results</p> <p>Commercially available CdSe QDs, which have a ZnS shell and poly-ethylene glycol (PEG) coating, and in-house prepared surfactant coated CdSe QDs were dosed to Caco-2 cells. Cell viability and attachment were studied after 24 hours of incubation. It was found that cytotoxicity of CdSe QDs was modulated by surface coating, as PEG coated CdSe QDs had less of an effect on Caco-2 cell viability and attachment. Acid treatment increased the toxicity of PEG coated QDs, most likely due to damage or removal of the surface coating and exposure of CdSe core material. Incubation with un-dialyzed in-house prepared CdSe QD preparations, which contained an excess amount of free Cd<sup>2+</sup>, resulted in dramatically reduced cell viability.</p> <p>Conclusion</p> <p>Exposure to CdSe QDs resulted in cultured intestinal cell detachment and death; cytotoxicity depended largely, however, on the QD coating and treatment (e.g. acid treatment, dialysis). Experimental results generally indicated that Caco-2 cell viability correlated with concentration of free Cd<sup>2+ </sup>ions present in cell culture medium. Exposure to low (gastric) pH affected cytotoxicity of CdSe QDs, indicating that route of exposure may be an important factor in QD cytotoxicity.</p

    Toxicity of CdSe Nanoparticles in Caco-2 Cell Cultures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Potential routes of nanomaterial exposure include inhalation, dermal contact, and ingestion. Toxicology of inhalation of ultra-fine particles has been extensively studied; however, risks of nanomaterial exposure via ingestion are currently almost unknown. Using enterocyte-like Caco-2 cells as a small intestine epithelial model, the possible toxicity of CdSe quantum dot (QD) exposure via ingestion was investigated. Effect of simulated gastric fluid treatment on CdSe QD cytotoxicity was also studied.</p> <p>Results</p> <p>Commercially available CdSe QDs, which have a ZnS shell and poly-ethylene glycol (PEG) coating, and in-house prepared surfactant coated CdSe QDs were dosed to Caco-2 cells. Cell viability and attachment were studied after 24 hours of incubation. It was found that cytotoxicity of CdSe QDs was modulated by surface coating, as PEG coated CdSe QDs had less of an effect on Caco-2 cell viability and attachment. Acid treatment increased the toxicity of PEG coated QDs, most likely due to damage or removal of the surface coating and exposure of CdSe core material. Incubation with un-dialyzed in-house prepared CdSe QD preparations, which contained an excess amount of free Cd<sup>2+</sup>, resulted in dramatically reduced cell viability.</p> <p>Conclusion</p> <p>Exposure to CdSe QDs resulted in cultured intestinal cell detachment and death; cytotoxicity depended largely, however, on the QD coating and treatment (e.g. acid treatment, dialysis). Experimental results generally indicated that Caco-2 cell viability correlated with concentration of free Cd<sup>2+ </sup>ions present in cell culture medium. Exposure to low (gastric) pH affected cytotoxicity of CdSe QDs, indicating that route of exposure may be an important factor in QD cytotoxicity.</p

    Interconnected Microphysiological Systems for Quantitative Biology and Pharmacology Studies

    Get PDF
    Microphysiological systems (MPSs) are in vitro models that capture facets of in vivo organ function through use of specialized culture microenvironments, including 3D matrices and microperfusion. Here, we report an approach to co-culture multiple different MPSs linked together physiologically on re-useable, open-system microfluidic platforms that are compatible with the quantitative study of a range of compounds, including lipophilic drugs. We describe three different platform designs - "4-way", "7-way", and "10-way" - each accommodating a mixing chamber and up to 4, 7, or 10 MPSs. Platforms accommodate multiple different MPS flow configurations, each with internal re-circulation to enhance molecular exchange, and feature on-board pneumatically-driven pumps with independently programmable flow rates to provide precise control over both intra- and inter-MPS flow partitioning and drug distribution. We first developed a 4-MPS system, showing accurate prediction of secreted liver protein distribution and 2-week maintenance of phenotypic markers. We then developed 7-MPS and 10-MPS platforms, demonstrating reliable, robust operation and maintenance of MPS phenotypic function for 3 weeks (7-way) and 4 weeks (10-way) of continuous interaction, as well as PK analysis of diclofenac metabolism. This study illustrates several generalizable design and operational principles for implementing multi-MPS "physiome-on-a-chip" approaches in drug discovery.United States. Army Research Office (Grant W911NF-12-2-0039

    American Society of Hematology 2021 guidelines for management of venous thromboembolism: prevention and treatment in patients with cancer

    Get PDF
    Background: Venous thromboembolism (VTE) is a common complication among patients with cancer. Patients with cancer and VTE are at a markedly increased risk for morbidity and mortality. Objective: These evidence-based guidelines of the American Society of Hematology (ASH) are intended to support patients, clinicians, and other health care professionals in their decisions about the prevention and treatment of VTE in patients with cancer. Methods: ASH formed a multidisciplinary guideline panel balanced to minimize potential bias from conflicts of interest. The guideline development process was supported by updated or new systematic evidence reviews. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach was used to assess evidence and make recommendations. Results: Recommendations address mechanical and pharmacological prophylaxis in hospitalized medical patients with cancer, those undergoing a surgical procedure, and ambulatory patients receiving cancer chemotherapy. The recommendations also address the use of anticoagulation for the initial, short-term, and long-term treatment of VTE in patients with cancer. Conclusions: Strong recommendations include not using thromboprophylaxis in ambulatory patients receiving cancer chemotherapy at low risk of VTE and to use low-molecular-weight heparin (LMWH) for initial treatment of VTE in patients with cancer. Conditional recommendations include using thromboprophylaxis in hospitalized medical patients with cancer, LMWH or fondaparinux for surgical patients with cancer, LMWH or direct oral anticoagulants (DOAC) in ambulatory patients with cancer receiving systemic therapy at high risk of VTE and LMWH or DOAC for initial treatment of VTE, DOAC for the short-term treatment of VTE, and LMWH or DOAC for the long-term treatment of VTE in patients with cancer

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
    • 

    corecore