3 research outputs found

    New automated fluoroscopic systems for pediatric applications.” J Appl Clin Med Phys 6:88–105

    No full text
    Pediatric patients are at higher risk to the adverse effects from exposure to ionizing radiation than adults. The smaller sizes of the anatomy and the reduced X-ray attenuation of the tissues provide special challenges. The goal of this effort is to investigate strategies for pediatric fluoroscopy in order to minimize the radiation exposure to these individuals, while maintaining effective diagnostic image quality. Modern fluoroscopy systems are often entirely automated and computer controlled. In this paper, various selectable and automated modes are examined to determine the influence of the fluoroscopy parameters upon the patient radiation exposures and image quality. These parameters include variable X-ray beam filters, automatic brightness control programs, starting kilovolt peak levels, fluoroscopic pulse rates, and other factors. Typical values of radiation exposure rates have been measured for a range of phantom thicknesses from 5 cm to 20 cm of acrylic. Other factors that have been assessed include spatial resolution, lowcontrast discrimination, and temporal resolution. The selection menu for various procedures is based upon the examination type, anatomical region, and patient size. For pediatric patients, the automated system can employ additional filtration, special automatic brightness control curves, pulsed fluoroscopy, and other features to reduce the patient radiation exposures without significantly compromising the image quality. The benefits gained from an optimal selection of automated programs and settings for fluoroscopy include ease of operation, better image quality, and lower patient radiation exposures. PACS numbers: 87.59.-e, 87.62.+n Key words: digital fluoroscopy, pediatric radiation exposur

    A clinically relevant model of acute respiratory distress syndrome in human-size swine

    No full text
    Despite over 30 years of intensive research for targeted therapies, treatment of acute respiratory distress syndrome (ARDS) remains supportive in nature. With mortality upwards of 30%, a high-fidelity pre-clinical model of ARDS, on which to test novel therapeutics, is urgently needed. We used the Yorkshire breed of swine to induce a reproducible model of ARDS in human-sized swine to allow the study of new therapeutics, from both mechanistic and clinical standpoints. For this, animals were anesthetized, intubated and mechanically ventilated, and pH-standardized gastric contents were delivered bronchoscopically, followed by intravenous infusion of Escherichia coli-derived lipopolysaccharide. Once the ratio of arterial oxygen partial pressure (PaO(2)) to fractional inspired oxygen (F(I)O(2)) had decreased to <150, the animals received standard ARDS treatment for up to 48 h. All swine developed moderate to severe ARDS. Chest radiographs taken at regular intervals showed significantly worse lung edema after induction of ARDS. Quantitative scoring of lung injury demonstrated time-dependent increases in interstitial and alveolar edema, neutrophil infiltration, and mild to moderate alveolar membrane thickening. This pre-clinical model of ARDS in human-sized swine recapitulates the clinical, radiographic and histopathologic manifestations of ARDS, providing a tool to study therapies for this highly morbid lung disease
    corecore