6 research outputs found

    Realidad MESH en metaversos inmersivos 3D, el futuro de una innovadora alternativa de enseñanza-aprendizaje en ciencias médicas

    Get PDF
    El siguiente artículo presenta el desarrollo de una nueva aplicación computacional que tiene por objetivo el proceso de importación de la representación tridimensional de estructuras orgánicas y anatómicas humanas, obtenidas del formato Dicom (archivo de imágenes médicas 2D obtenidas por un tomógrafo axial computarizado) y optimizadas a un formato estereolitográfico (archivo real 3D) ,mediante el proceso de segmentación con el uso de un software convertor llamado Mimics de la empresa Materialise. Este archivo optimizado y acondicionado posteriormente al formato collada .dae, es importado dentro de la plataforma virtual 3D inmersiva llamada Second Life. El propósito de esta experimentación en la aplicación, fue innovar los métodos de desarrollo y construcción en los mundos virtuales inmersivos, creando innovadoras herramientas de enseñanza aprendizaje en ciencias médicas y otras

    Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula)

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10933-009-9387-7.We present the Holocene sequence from Lago Enol (43°16′N, 4°59′W, 1,070 m a.s.l.), Cantabrian Mountains, northern Spain. A multiproxy analysis provided comprehensive information about regional humidity and temperature changes. The analysis included sedimentological descriptions, physical properties, organic carbon and carbonate content, mineralogy and geochemical composition together with biological proxies including diatom and ostracod assemblages. A detailed pollen study enabled reconstruction of variations in vegetation cover, which were interpreted in the context of climate changes and human impact. Four distinct stages were recognized for the last 13,500 years: (1) a cold and dry episode that includes the Younger Dryas event (13,500–11,600 cal. year BP); (2) a humid and warmer period characterizing the onset of the Holocene (11,600–8,700 cal. year BP); (3) a tendency toward a drier climate during the middle Holocene (8,700–4,650 cal. year BP); and (4) a return to humid conditions following landscape modification by human activity (pastoral activities, deforestation) in the late Holocene (4,650–2,200 cal. year BP). Superimposed on relatively stable landscape conditions (e.g. maintenance of well established forests), the typical environmental variability of the southern European region is observed at this site.The Spanish Inter-Ministry Commission of Science and Technology (CICYT), the Spanish National Parks agency, the European Commission, the Spanish Ministry of Science, and the European Social Fund

    Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula)

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10933-009-9387-7.We present the Holocene sequence from Lago Enol (43°16′N, 4°59′W, 1,070 m a.s.l.), Cantabrian Mountains, northern Spain. A multiproxy analysis provided comprehensive information about regional humidity and temperature changes. The analysis included sedimentological descriptions, physical properties, organic carbon and carbonate content, mineralogy and geochemical composition together with biological proxies including diatom and ostracod assemblages. A detailed pollen study enabled reconstruction of variations in vegetation cover, which were interpreted in the context of climate changes and human impact. Four distinct stages were recognized for the last 13,500 years: (1) a cold and dry episode that includes the Younger Dryas event (13,500–11,600 cal. year BP); (2) a humid and warmer period characterizing the onset of the Holocene (11,600–8,700 cal. year BP); (3) a tendency toward a drier climate during the middle Holocene (8,700–4,650 cal. year BP); and (4) a return to humid conditions following landscape modification by human activity (pastoral activities, deforestation) in the late Holocene (4,650–2,200 cal. year BP). Superimposed on relatively stable landscape conditions (e.g. maintenance of well established forests), the typical environmental variability of the southern European region is observed at this site.The Spanish Inter-Ministry Commission of Science and Technology (CICYT), the Spanish National Parks agency, the European Commission, the Spanish Ministry of Science, and the European Social Fund

    The genomic history of the Iberian Peninsula over the past 8000 years

    Get PDF
    We assembled genome-wide data from 271 ancient Iberians, of whom 176 are from the largely unsampled period after 2000 BCE, thereby providing a high-resolution time transect of the Iberian Peninsula.We document high genetic substructure between northwestern and southeastern hunter-gatherers before the spread of farming.We reveal sporadic contacts between Iberia and North Africa by ~2500 BCE and, by ~2000 BCE, the replacement of 40% of Iberia's ancestry and nearly 100% of its Y-chromosomes by people with Steppe ancestry.We show that, in the Iron Age, Steppe ancestry had spread not only into Indo-European-speaking regions but also into non-Indo-European-speaking ones, and we reveal that present-day Basques are best described as a typical Iron Age population without the admixture events that later affected the rest of Iberia. Additionally, we document how, beginning at least in the Roman period, the ancestry of the peninsula was transformed by gene flow from North Africa and the eastern Mediterranean

    The genomic history of the Iberian Peninsula over the past 8000 years

    Get PDF
    We assembled genome-wide data from 271 ancient Iberians, of whom 176 are from the largely unsampled period after 2000 BCE, thereby providing a high-resolution time transect of the Iberian Peninsula. We document high genetic substructure between northwestern and southeastern hunter-gatherers before the spread of farming. We reveal sporadic contacts between Iberia and North Africa by ~2500 BCE and, by ~2000 BCE, the replacement of 40% of Iberia’s ancestry and nearly 100% of its Y-chromosomes by people with Steppe ancestry. We show that, in the Iron Age, Steppe ancestry had spread not only into Indo-European–speaking regions but also into non-Indo-European–speaking ones, and we reveal that present-day Basques are best described as a typical Iron Age population without the admixture events that later affected the rest of Iberia. Additionally, we document how, beginning at least in the Roman period, the ancestry of the peninsula was transformed by gene flow from North Africa and the eastern Mediterranean.J.M.F., F.J.L.-C., J.I.M., F.X.O., J.D., and M.S.B. were supported by HAR2017-86509-P, HAR2017-87695-P, and SGR2017-11 from the Generalitat de Catalunya, AGAUR agency. C.L.-F. was supported by Obra Social La Caixa and by FEDER-MINECO (BFU2015- 64699-P). L.B.d.L.E. was supported by REDISCO-HAR2017-88035-P (Plan Nacional I+D+I, MINECO). C.L., P.R., and C.Bl. were supported by MINECO (HAR2016-77600-P). A.Esp., J.V.-V., G.D., and D.C.S.-G. were supported by MINECO (HAR2009-10105 and HAR2013-43851-P). D.J.K. and B.J.C. were supported by NSF BCS-1460367. K.T.L., A.W., and J.M. were supported by NSF BCS-1153568. J.F.-E. and J.A.M.-A. were supported by IT622-13 Gobierno Vasco, Diputación Foral de Álava, and Diputación Foral de Gipuzkoa. We acknowledge support from the Portuguese Foundation for Science and Technology (PTDC/EPH-ARQ/4164/2014) and the FEDER-COMPETE 2020 project 016899. P.S. was supported by the FCT Investigator Program (IF/01641/2013), FCT IP, and ERDF (COMPETE2020 – POCI). M.Si. and K.D. were supported by a Leverhulme Trust Doctoral Scholarship awarded to M.B.R. and M.P. D.R. was supported by an Allen Discovery Center grant from the Paul Allen Foundation, NIH grant GM100233, and the Howard Hughes Medical Institute. V.V.-M. and W.H. were supported by the Max Planck Society

    The genomic history of the Iberian Peninsula over the past 8000 years

    Full text link
    We assembled genome-wide data from 271 ancient Iberians, of whom 176 are from the largely unsampled period after 2000 BCE, thereby providing a high-resolution time transect of the Iberian Peninsula. We document high genetic substructure between northwestern and southeastern hunter-gatherers before the spread of farming. We reveal sporadic contacts between Iberia and North Africa by ~2500 BCE and, by ~2000 BCE, the replacement of 40% of Iberia's ancestry and nearly 100% of its Y-chromosomes by people with Steppe ancestry. We show that, in the Iron Age, Steppe ancestry had spread not only into Indo-European-speaking regions but also into non-Indo-European-speaking ones, and we reveal that present-day Basques are best described as a typical Iron Age population without the admixture events that later affected the rest of Iberia. Additionally, we document how, beginning at least in the Roman period, the ancestry of the peninsula was transformed by gene flow from North Africa and the eastern Mediterranean.J.M.F., F.J.L.-C., J.I.M., F.X.O., J.D., and M.S.B. were supported by HAR2017-86509-P, HAR2017-87695-P, and SGR2017-11 from the Generalitat de Catalunya, AGAUR agency. C.L.-F. was supported by Obra Social La Caixa and by FEDER-MINECO (BFU2015- 64699-P). L.B.d.L.E. was supported by REDISCO-HAR2017-88035-P (Plan Nacional I+D+I, MINECO). C.L., P.R., and C.Bl. were supported by MINECO (HAR2016-77600-P). A.Esp., J.V.-V., G.D., and D.C.S.-G. were supported by MINECO (HAR2009-10105 and HAR2013-43851-P). D.J.K. and B.J.C. were supported by NSF BCS-1460367. K.T.L., A.W., and J.M. were supported by NSF BCS-1153568. J.F.-E. and J.A.M.-A. were supported by IT622-13 Gobierno Vasco, Diputación Foral de Álava, and Diputación Foral de Gipuzkoa. We acknowledge support from the Portuguese Foundation for Science and Technology (PTDC/EPH-ARQ/4164/2014) and the FEDER-COMPETE 2020 project 016899. P.S. was supported by the FCT Investigator Program (IF/01641/2013), FCT IP, and ERDF (COMPETE2020 – POCI). M.Si. and K.D. were supported by a Leverhulme Trust Doctoral Scholarship awarded to M.B.R. and M.P. D.R. was supported by an Allen Discovery Center grant from the Paul Allen Foundation, NIH grant GM100233, and the Howard Hughes Medical Institute. V.V.-M. and W.H. were supported by the Max Planck Society
    corecore