142 research outputs found

    Beyond the binary collision approximation for the large-qq response of liquid 4^4He

    Full text link
    We discuss corrections to the linear response of a many-body system beyond the binary collision approximation. We first derive for smooth pair interactions an exact expression of the response 1/q2\propto 1/q^2, considerably simplifying existing forms and present also the generalization for interactions with a strong, short-range repulsion. We then apply the latter to the case of liquid 4^4He. We display the numerical influence of the 1/q21/q^2 correction around the quasi-elastic peak and in the low-intensity wings of the response, far from that peak. Finally we resolve an apparent contradiction in previous discussions around the fourth order cumulant expansion coefficient. Our results prove that the large-qq response of liquid 4^4He can be accurately understood on the basis of a dynamical theory.Comment: 19 p. Figs. available on reques

    Effect of a single tetanus-diphtheria vaccine dose on the immunity of elderly people in São Paulo, Brazil

    Get PDF
    Epidemiological data regarding tetanus and diphtheria immunity in elderly people in Brazil are scarce. During the First National Immunization Campaign for the Elderly in Brazil in April 1999, 98 individuals (median age: 84 years) received one tetanus-dyphtheria (Td) vaccine dose (Butantan Institute, lot number 9808079/G). Inclusion criteria were elderly individuals without a history of severe immunosuppressive disease, acute infectious disease or use of immunomodulators. Blood samples were collected immediately before the vaccine and 30 days later. Serum was separated and stored at -20ºC until analysis. Tetanus and diphtheria antibodies were measured by the double-antigen ELISA test. Tetanus and diphtheria antibody concentrations lower than 0.01 IU/mL were considered to indicate the absence of protection, between 0.01 and 0.09 IU/mL were considered to indicate basic immunity, and values of 0.1 IU/mL or higher were considered to indicate full protection. Before vaccination, 18% of the individuals were susceptible to diphtheria and 94% were susceptible to tetanus. After one Td dose, 78% became fully immune to diphtheria, 13% attained basic immunity, and 9% were still susceptible to the disease. In contrast, 79% remained susceptible to tetanus, 4% had basic immunity and 17% were fully immune. Although one Td dose increases immunity to diphtheria in many elderly people who live in Brazil, a complete vaccination series appears to be necessary for the prevention of tetanus.Universidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Disciplina de Infectologia PediátricaUniversidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Disciplina de InfectologiaUNIFESP, EPM, Disciplina de Infectologia PediátricaUNIFESP, EPM, Disciplina de InfectologiaSciEL

    GADGET: A code for collisionless and gasdynamical cosmological simulations

    Full text link
    We describe the newly written code GADGET which is suitable both for cosmological simulations of structure formation and for the simulation of interacting galaxies. GADGET evolves self-gravitating collisionless fluids with the traditional N-body approach, and a collisional gas by smoothed particle hydrodynamics. Along with the serial version of the code, we discuss a parallel version that has been designed to run on massively parallel supercomputers with distributed memory. While both versions use a tree algorithm to compute gravitational forces, the serial version of GADGET can optionally employ the special-purpose hardware GRAPE instead of the tree. Periodic boundary conditions are supported by means of an Ewald summation technique. The code uses individual and adaptive timesteps for all particles, and it combines this with a scheme for dynamic tree updates. Due to its Lagrangian nature, GADGET thus allows a very large dynamic range to be bridged, both in space and time. So far, GADGET has been successfully used to run simulations with up to 7.5e7 particles, including cosmological studies of large-scale structure formation, high-resolution simulations of the formation of clusters of galaxies, as well as workstation-sized problems of interacting galaxies. In this study, we detail the numerical algorithms employed, and show various tests of the code. We publically release both the serial and the massively parallel version of the code.Comment: 32 pages, 14 figures, replaced to match published version in New Astronomy. For download of the code, see http://www.mpa-garching.mpg.de/gadget (new version 1.1 available

    Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy

    Full text link
    We review HB stars in a broad astrophysical context, including both variable and non-variable stars. A reassessment of the Oosterhoff dichotomy is presented, which provides unprecedented detail regarding its origin and systematics. We show that the Oosterhoff dichotomy and the distribution of globular clusters (GCs) in the HB morphology-metallicity plane both exclude, with high statistical significance, the possibility that the Galactic halo may have formed from the accretion of dwarf galaxies resembling present-day Milky Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the second-parameter problem is presented. A technique is proposed to estimate the HB types of extragalactic GCs on the basis of integrated far-UV photometry. The relationship between the absolute V magnitude of the HB at the RR Lyrae level and metallicity, as obtained on the basis of trigonometric parallax measurements for the star RR Lyrae, is also revisited, giving a distance modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are studied. Finally, the conductive opacities used in evolutionary calculations of low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and Space Scienc

    Incretin-based therapy: a powerful and promising weapon in the treatment of type 2 diabetes mellitus

    Get PDF
    Type 2 diabetes mellitus (T2DM) is a progressive multisystemic disease that increases significantly cardiovascular morbidity and mortality. It is associated with obesity, insulin resistance, beta-cell dysfunction, and hyperglucagonemia, the combination of which typically leads to hyperglycemia. Incretin-based treatment modalities, and in particular glucagon-like peptide 1 (GLP-1) receptor agonists, are able to successfully counteract several of the underlying pathophysiological abnormalities of T2DM. The pancreatic effects of GLP-1 receptor agonists include glucose-lowering effects by stimulating insulin secretion and inhibiting glucagon release in a strictly glucose-dependent manner, increased beta-cell proliferation, and decreased beta-cell apoptosis. GLP-1 receptors are widely expressed throughout human body; thus, GLP-1-based therapies exert pleiotropic and multisystemic effects that extend far beyond pancreatic islets. A large body of experimental and clinical data have suggested a considerable protective role of GLP-1 analogs in the cardiovascular system (decreased blood pressure, improved endothelial and myocardial function, functional recovery of failing and ischemic heart, arterial vasodilatation), kidneys (increased diuresis and natriuresis), gastrointestinal tract (delayed gastric emptying, reduced gastric acid secretion), and central nervous system (appetite suppression, neuroprotective properties). The pharmacologic use of GLP-1 receptor agonists has been shown to reduce bodyweight and systolic blood pressure, and significantly improve glycemic control and lipid profile. Interestingly, weight reduction induced by GLP-1 analogs reflects mainly loss of abdominal visceral fat. The critical issue of whether the emerging positive cardiometabolic effects of GLP-1 analogs can be translated into better clinical outcomes for diabetic patients in terms of long-term hard endpoints, such as cardiovascular morbidity and mortality, remains to be elucidated with prospective, large-scale clinical trials

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
    corecore