18 research outputs found

    Pathogenic copy number variants and SCN1A mutations in patients with intellectual disability and childhood-onset epilepsy

    Get PDF
    Background Copy number variants (CNVs) have been linked to neurodevelopmental disorders such as intellectual disability (ID), autism, epilepsy and psychiatric disease. There are few studies of CNVs in patients with both ID and epilepsy. Methods We evaluated the range of rare CNVs found in 80 Welsh patients with ID or developmental delay (DD), and childhood-onset epilepsy. We performed molecular cytogenetic testing by single nucleotide polymorphism array or microarray-based comparative genome hybridisation. Results 8.8 % (7/80) of the patients had at least one rare CNVs that was considered to be pathogenic or likely pathogenic. The CNVs involved known disease genes (EHMT1, MBD5 and SCN1A) and imbalances in genomic regions associated with neurodevelopmental disorders (16p11.2, 16p13.11 and 2q13). Prompted by the observation of two deletions disrupting SCN1A we undertook further testing of this gene in selected patients. This led to the identification of four pathogenic SCN1A mutations in our cohort. Conclusions We identified five rare de novo deletions and confirmed the clinical utility of array analysis in patients with ID/DD and childhood-onset epilepsy. This report adds to our clinical understanding of these rare genomic disorders and highlights SCN1A mutations as a cause of ID and epilepsy, which can easily be overlooked in adults

    Recent developments in the genetics of childhood epileptic encephalopathies: impact in clinical practice

    Full text link

    De novo SCN1A mutations in migrating partial seizures of infancy

    No full text
    Objective: To determine the genetic etiology of the severe early infantile onset syndrome of malignant migrating partial seizures of infancy (MPSI). Methods: Fifteen unrelated children with MPSI were screened for mutations in genes associated with infantile epileptic encephalopathies: SCN1A, CDKL5, STXBP1, PCDH19, and POLG. Microarray studies were performed to identify copy number variations. Results: One patient had a de novo SCN1A missense mutation p.R862G that affects the voltage sensor segment of SCN1A. A second patient had a de novo 11.06 Mb deletion of chromosome 2q24.2q31.1 encompassing more than 40 genes that included SCN1A. Screening of CDKL5 (13/15 patients), STXBP1 (13/15), PCDH19 (9/11 females), and the 3 common European mutations of POLG (11/15) was negative. Pathogenic copy number variations were not detected in 11/12 cases. Conclusion: Epilepsies associated with SCN1A mutations range in severity from febrile seizures to severe epileptic encephalopathies including Dravet syndrome and severe infantile multifocal epilepsy. MPSI is now the most severe SCN1A phenotype described to date. While not a common cause of MPSI, SCN1A screening should now be considered in patients with this devastating epileptic encephalopathy.D. Carranza Rojo... L.M. Dibbens... J.C. Mulley... et al
    corecore