2 research outputs found

    Natural products with protein tyrosine phosphatase inhibitory activity

    No full text
    Protein tyrosine phosphatases (PTPs) play an essential role in maintaining the proper tyrosine phosphorylation state of proteins. Abnormal tyrosine phosphorylation has been implicated in diseases as diverse as type 2 diabetes, cancer, immune disorders and neurological disorders, and thus inhibitors of PTPs have been investigated as potential treatments of these diseases. Natural products are widely regarded to be privileged structures in drug discovery efforts, and are therefore a good starting point for the development of PTP inhibitors. Here we describe reported natural product PTP inhibitors as well as methods to screen for natural product PTP inhibitors using bioassay-guided fractionation. These methods are illustrated using the example of a family of bromotyrosine-derived PTP inhibitors isolated from two marine sponges. We also identify potential pitfalls and false-positives, in particular compounds that are oxidizing agents that react irreversibly with the PTP

    Cystargolides, 20S proteasome inhibitors Isolated from Kitasatospora cystarginea

    No full text
    Two novel β-lactone-containing natural products, cystargolides A (1) and B (2), were isolated from the actinomycete Kitasatospora cystarginea. The production of these two natural products was highlighted using a methodology associating liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analysis and the statistical analysis tool principal component analysis (PCA). Their structures were elucidated by interpretation of NMR experiments and tandem mass spectrometry. The absolute configurations of the amino acid residues were determined using Marfey’s method, and the relative configurations of the β-lactone substituents were determined on the basis of the vicinal 3JHH coupling value. Due to the presence of the β-lactone, 1 and 2 were evaluated for their ability to inhibit the human 20S proteasome. 1 and 2 both inhibited the 20S proteasome in vitro with IC50 values of 0.35 and 0.93 μM, respectively
    corecore