13,025 research outputs found
Effects of fuselage forebody geometry on low-speed lateral-directional characteristics of twin-tail fighter model at high angles of attack
Low-speed, static wind-tunnel tests were conducted to explore the effects of fighter fuselage forebody geometry on lateral-directional characteristics at high angles of attack and to provide data for general design procedures. Effects of eight different forebody configurations and several add-on devices (e.g., nose strakes, boundary-layer trip wires, and nose booms) were investigated. Tests showed that forebody design features such as fineness ratio, cross-sectional shape, and add-on devices can have a significant influence on both lateral-directional and longitudinal aerodynamic stability. Several of the forebodies produced both lateral-directional symmetry and strong favorable changes in lateral-directional stability. However, the same results also indicated that such forebody designs can produce significant reductions in longitudinal stability near maximum lift and can significantly change the influence of other configuration variables. The addition of devices to highly tailored forebody designs also can significantly degrade the stability improvements provided by the clean forebody
Dynamic behavior of an unsteady trubulent boundary layer
Experiments on an unsteady turbulent boundary layer are reported in which the upstream portion of the flow is steady (in the mean) and in the downstream region, the boundary layer sees a linearly decreasing free stream velocity. This velocity gradient oscillates in time, at frequencies ranging from zero to approximately the bursting frequency. For the small amplitude, the mean velocity and mean turbulence intensity profiles are unaffected by the oscillations. The amplitude of the periodic velocity component, although as much as 70% greater than that in the free stream for very low frequencies, becomes equal to that in the free stream at higher frequencies. At high frequencies, both the boundary layer thickness and the Reynolds stress distribution across the boundary layer become frozen. The behavior at higher amplitude is quite similar. At sufficiently high frequencies, the boundary layer thickness remains frozen at the mean value over the oscillation cycle, even though flow reverses near the wall during a part of the cycle
Study of process variables associated with manufacturing hermetically sealed nickel-cadium cells Quarterly report, 23 May - 23 Aug. 1970
Separator materials, ceramic to metal seals, cell plate polarization and impregnation processes, and plaque sintering data for study of variables in manufacture of nickel cadmium cell
Development of systems and techniques for landing an aircraft using onboard television
A flight program was conducted to develop a landing technique with which a pilot could consistently and safely land a remotely piloted research vehicle (RPRV) without outside visual reference except through television. Otherwise, instrumentation was standard. Such factors as the selection of video parameters, the pilot's understanding of the television presentation, the pilot's ground cockpit environment, and the operational procedures for landing were considered. About 30 landings were necessary for a pilot to become sufficiently familiar and competent with the test aircraft to make powered approaches and landings with outside visual references only through television. When steep approaches and landings were made by remote control, the pilot's workload was extremely high. The test aircraft was used as a simulator for the F-15 RPRV, and as such was considered to be essential to the success of landing the F-15 RPRV
Near-Critical Gravitational Collapse and the Initial Mass Function of Primordial Black Holes
The recent discovery of critical phenomena arising in gravitational collapse
near the threshold of black hole formation is used to estimate the initial mass
function of primordial black holes (PBHs). It is argued that the universal
scaling relation between black hole mass and initial perturbation found for a
variety of collapsing space-times also applies to PBH formation, indicating the
possibility of the formation of PBHs with masses much smaller than one horizon
mass. Owing to the natural fine-tuning of initial conditions by the exponential
decline of the probability distribution for primordial density fluctuations,
sub-horizon mass PBHs are expected to form at all epochs. This result suggests
that the constraints on the primordial fluctuation spectrum based on the
abundance of PBHs at different mass scales may have to be revisited.Comment: 4 pages, uses revtex, also available at
http://bigwhirl.uchicago.edu/jcn/pub_pbh.html . To appear in Phys. Rev. Let
Emergence of steady and oscillatory localized structures in a phytoplankton-nutrient model
Co-limitation of marine phytoplankton growth by light and nutrient, both of
which are essential for phytoplankton, leads to complex dynamic behavior and a
wide array of coherent patterns. The building blocks of this array can be
considered to be deep chlorophyll maxima, or DCMs, which are structures
localized in a finite depth interior to the water column. From an ecological
point of view, DCMs are evocative of a balance between the inflow of light from
the water surface and of nutrients from the sediment. From a (linear)
bifurcational point of view, they appear through a transcritical bifurcation in
which the trivial, no-plankton steady state is destabilized. This article is
devoted to the analytic investigation of the weakly nonlinear dynamics of these
DCM patterns, and it has two overarching themes. The first of these concerns
the fate of the destabilizing stationary DCM mode beyond the center manifold
regime. Exploiting the natural singularly perturbed nature of the model, we
derive an explicit reduced model of asymptotically high dimension which fully
captures these dynamics. Our subsequent and fully detailed study of this model
- which involves a subtle asymptotic analysis necessarily transgressing the
boundaries of a local center manifold reduction - establishes that a stable DCM
pattern indeed appears from a transcritical bifurcation. However, we also
deduce that asymptotically close to the original destabilization, the DCM
looses its stability in a secondary bifurcation of Hopf type. This is in
agreement with indications from numerical simulations available in the
literature. Employing the same methods, we also identify a much larger DCM
pattern. The development of the method underpinning this work - which, we
expect, shall prove useful for a larger class of models - forms the second
theme of this article
Growth of primordial black holes in a universe containing a massless scalar field
The evolution of primordial black holes in a flat Friedmann universe with a
massless scalar field is investigated in fully general relativistic numerical
relativity. A primordial black hole is expected to form with a scale comparable
to the cosmological apparent horizon, in which case it may go through an
initial phase with significant accretion. However, if it is very close to the
cosmological apparent horizon size, the accretion is suppressed due to general
relativistic effects. In any case, it soon gets smaller than the cosmological
horizon and thereafter it can be approximated as an isolated vacuum solution
with decaying mass accretion. In this situation the dynamical and inhomogeneous
scalar field is typically equivalent to a perfect fluid with a stiff equation
of state . The black hole mass never increases by more than a factor of
two, despite recent claims that primordial black holes might grow substantially
through accreting quintessence. It is found that the gravitational memory
scenario, proposed for primordial black holes in Brans-Dicke and scalar-tensor
theories of gravity, is highly unphysical.Comment: 24 pages, accepted for publication in Physical Review
Beyond the hybrid library : libraries in a Web 2.0 world
Considers the development of social networking and the concept of Web 2.0. Looks at the implications for libraries and how traditional competences remain relevant. Explores what libraries are doing and must do to remain relevan
Limits of sympathetic cooling of fermions by zero temperature bosons due to particle losses
It has been suggested by Timmermans [Phys. Rev. Lett. {\bf 87}, 240403
(2001)] that loss of fermions in a degenerate system causes strong heating. We
address the fundamental limit imposed by this loss on the temperature that may
be obtained by sympathetic cooling of fermions by bosons. Both a quantum
Boltzmann equation and a quantum Boltzmann \emph{master} equation are used to
study the evolution of the occupation number distribution. It is shown that, in
the thermodynamic limit, the Fermi gas cools to a minimal temperature , where
is a constant loss rate, is the
bare fermion--boson collision rate not including the reduction due to Fermi
statistics, and is the chemical potential. It
is demonstrated that, beyond the thermodynamic limit, the discrete nature of
the momentum spectrum of the system can block cooling. The unusual non-thermal
nature of the number distribution is illustrated from several points of view:
the Fermi surface is distorted, and in the region of zero momentum the number
distribution can descend to values significantly less than unity. Our model
explicitly depends on a constant evaporation rate, the value of which can
strongly affect the minimum temperature.Comment: 14 pages, 7 figures. Phys. Rev. A in pres
Tunable tunneling: An application of stationary states of Bose-Einstein condensates in traps of finite depth
The fundamental question of how Bose-Einstein condensates tunnel into a
barrier is addressed. The cubic nonlinear Schrodinger equation with a finite
square well potential, which models a Bose-Einstein condensate in a
quasi-one-dimensional trap of finite depth, is solved for the complete set of
localized and partially localized stationary states, which the former evolve
into when the nonlinearity is increased. An immediate application of these
different solution types is tunable tunneling. Magnetically tunable Feshbach
resonances can change the scattering length of certain Bose-condensed atoms,
such as Rb, by several orders of magnitude, including the sign, and
thereby also change the mean field nonlinearity term of the equation and the
tunneling of the wavefunction. We find both linear-type localized solutions and
uniquely nonlinear partially localized solutions where the tails of the
wavefunction become nonzero at infinity when the nonlinearity increases. The
tunneling of the wavefunction into the non-classical regime and thus its
localization therefore becomes an external experimentally controllable
parameter.Comment: 11 pages, 5 figure
- …