17,720 research outputs found
Kinematic Self-Similar Cylindrically Symmetric Solutions
This paper is devoted to find out cylindrically symmetric kinematic
self-similar perfect fluid and dust solutions. We study the cylindrically
symmetric solutions which admit kinematic self-similar vectors of second,
zeroth and infinite kinds, not only for the tilted fluid case but also for the
parallel and orthogonal cases. It is found that the parallel case gives
contradiction both in perfect fluid and dust cases. The orthogonal perfect
fluid case yields a vacuum solution while the orthogonal dust case gives
contradiction. It is worth mentioning that the tilted case provides solution
both for the perfect as well as dust cases.Comment: 22 pages, accepted for publication in Int. J. of Mod. Phys.
Persistence of black holes through a cosmological bounce
We discuss whether black holes could persist in a universe which recollapses
and then bounces into a new expansion phase. Whether the bounce is of classical
or quantum gravitational origin, such cosmological models are of great current
interest. In particular, we investigate the mass range in which black holes
might survive a bounce and ways of differentiating observationally between
black holes formed just after and just before the last bounce. We also discuss
the consequences of the universe going through a sequence of dimensional
changes as it passes through a bounce.Comment: 8 pages, 1 figur
Growth of primordial black holes in a universe containing a massless scalar field
The evolution of primordial black holes in a flat Friedmann universe with a
massless scalar field is investigated in fully general relativistic numerical
relativity. A primordial black hole is expected to form with a scale comparable
to the cosmological apparent horizon, in which case it may go through an
initial phase with significant accretion. However, if it is very close to the
cosmological apparent horizon size, the accretion is suppressed due to general
relativistic effects. In any case, it soon gets smaller than the cosmological
horizon and thereafter it can be approximated as an isolated vacuum solution
with decaying mass accretion. In this situation the dynamical and inhomogeneous
scalar field is typically equivalent to a perfect fluid with a stiff equation
of state . The black hole mass never increases by more than a factor of
two, despite recent claims that primordial black holes might grow substantially
through accreting quintessence. It is found that the gravitational memory
scenario, proposed for primordial black holes in Brans-Dicke and scalar-tensor
theories of gravity, is highly unphysical.Comment: 24 pages, accepted for publication in Physical Review
Near-Critical Gravitational Collapse and the Initial Mass Function of Primordial Black Holes
The recent discovery of critical phenomena arising in gravitational collapse
near the threshold of black hole formation is used to estimate the initial mass
function of primordial black holes (PBHs). It is argued that the universal
scaling relation between black hole mass and initial perturbation found for a
variety of collapsing space-times also applies to PBH formation, indicating the
possibility of the formation of PBHs with masses much smaller than one horizon
mass. Owing to the natural fine-tuning of initial conditions by the exponential
decline of the probability distribution for primordial density fluctuations,
sub-horizon mass PBHs are expected to form at all epochs. This result suggests
that the constraints on the primordial fluctuation spectrum based on the
abundance of PBHs at different mass scales may have to be revisited.Comment: 4 pages, uses revtex, also available at
http://bigwhirl.uchicago.edu/jcn/pub_pbh.html . To appear in Phys. Rev. Let
- …