274 research outputs found
Recommended from our members
Directional shear force microscopy
We describe a technique, based on shear force microscopy, that allows one to detect shear forces in a chosen direction at the nanometer scale. The lateral direction of an oscillating probe tip is determined by selecting which of the four quadrants are excited on the piezo driver. The shear forces depend directly on this lateral direction if structural anisotropies are present, as confirmed with polydiacetylene monolayers. (C) 2001 American Institute of Physics
Contact of Single Asperities with Varying Adhesion: Comparing Continuum Mechanics to Atomistic Simulations
Atomistic simulations are used to test the equations of continuum contact
mechanics in nanometer scale contacts. Nominally spherical tips, made by
bending crystals or cutting crystalline or amorphous solids, are pressed into a
flat, elastic substrate. The normal displacement, contact radius, stress
distribution, friction and lateral stiffness are examined as a function of load
and adhesion. The atomic scale roughness present on any tip made of discrete
atoms is shown to have profound effects on the results. Contact areas, local
stresses, and the work of adhesion change by factors of two to four, and the
friction and lateral stiffness vary by orders of magnitude. The microscopic
factors responsible for these changes are discussed. The results are also used
to test methods for analyzing experimental data with continuum theory to
determine information, such as contact area, that can not be measured directly
in nanometer scale contacts. Even when the data appear to be fit by continuum
theory, extracted quantities can differ substantially from their true values
Negative stiffness and enhanced damping of individual multiwalled carbon nanotubes
The mechanical instabilities and viscoelastic response of individual multiwalled carbon nanotubes and nanofibers (MWCNTs/Fs) under uniaxial compression are studied with atomic force microscopy. Specific buckling events are evident by regimes of negative stiffness, i.e., marked drops in force with increasing compression. Uniaxial cyclic loading can be repeatedly executed even in initially postbuckled regimes, where the CNTs/Fs display incremental negative stiffness. Increases in mechanical damping of 145–600 % in these initially postbuckled regimes, as compared to the linear prebuckled regimes, are observed. Increased damping is attributed to frictional energy dissipation of walls in buckled configurations of the MWCNTs/Fs. This represents the extension of the concept of negative stiffness to the scale of nanostructures and opens up possibilities for designing nanocomposites with high stiffness and high damping simultaneously
Friction and Molecular Deformation in the Tensile Regime
Recent molecular level studies of energy dissipation in sliding friction have suggested a contribution from adhesive forces. In order to observe this directly, we have constructed a scanning force microscope with decoupled lateral and normal force sensors to simultaneously observe the onset of both friction and attractive forces. Measurements made on self-assembling alkanethiol films with chemically different tail groups show that friction can increase with stronger adhesive intermolecular forces and from the associated tensile deformation and collective motion of the thiol chains
A variable temperature ultrahigh vacuum atomic force microscope
A new atomic force microscope (AFM) that operates in ultrahigh vacuum (UHV) is described. The sample is held fixed with spring clamps while the AMF cantilever and deflection sensor are scanned above it. Thus, the sample is easily coupled to a liquid nitrogen cooled thermal reservoir which allows AFM operation from ≈ 100 K to room temperature. AFM operation above room temperature is also possible. The microscope head is capable of coarse x-y positioning over millimeter distances so that AFM images can be taken virtually anywhere upon a macroscopic sample. The optical beam deflection scheme is used for detection, allowing simultaneous normal and lateral force measurements. The sample can be transferred from the AFM stage to a low energy electron diffraction/Auger electron spectrometer stage for surface analysis. Atomic lattice resolution AFM images taken in UHV are presented at 110, 296, and 430 K
Recommended from our members
Development and Integration of Single-Asperity Nanotribology Experiments & Nanoscale Interface Finite Element Modeling for Prediction and Control of Friction and Damage in Micro- and Nano-mechnical Systems
This report describes the accomplishments of the DOE BES grant entitled "Development and Integration of Single-Asperity Nanotribology Experiments & Nanoscale Interface Finite Element Modeling for Prediction and Control of Friction and Damage in Micro- and Nano-mechnical Systems". Key results are: the determination of nanoscale frictional properties of MEMS surfaces, self-assembled monolayers, and novel carbon-based films, as well as the development of models to describe this behavior
Origin of Ultralow Friction andWear in Ultrananocrystalline Diamond
The impressively low friction and wear of diamond in humid environments is debated to originate from either the stability of the passivated diamond surface or sliding-induced graphitization/rehybridization of carbon. We find ultralow friction and wear for ultrananocrystalline diamond surfaces even in dry environments, and observe negligible rehybridization except for a modest, submonolayer amount under the most severe conditions (high load, low humidity). This supports the passivation hypothesis, and establishes a new regime of exceptionally low friction and wear for diamond
- …