338 research outputs found

    ART Neural Networks: Distributed Coding and ARTMAP Applications

    Full text link
    ART (Adaptive Resonance Theory) neural networks for fast, stable learning and prediction have been applied in a variety of areas. Applications include airplane design and manufacturing, automatic target recognition, financial forecasting, machine tool monitoring, digital circuit design, chemical analysis, and robot vision. Supervised ART architectures, called ARTMAP systems, feature internal control mechanisms that create stable recognition categories of optimal size by maximizing code compression while minimizing predictive error in an on-line setting. Special-purpose requirements of various application domains have led to a number of ARTMAP variants, including fuzzy ARTMAP, ART-EMAP, Gaussian ARTMAP, and distributed ARTMAP. ARTMAP has been used for a variety of applications, including computer-assisted medical diagnosis. Medical databases present many of the challenges found in general information management settings where speed, efficiency, ease of use, and accuracy are at a premium. A direct goal of improved computer-assisted medicine is to help deliver quality emergency care in situations that may be less than ideal. Working with these problems has stimulated a number of ART architecture developments, including ARTMAP-IC [1]. This paper describes a recent collaborative effort, using a new cardiac care database for system development, has brought together medical statisticians and clinicians at the New England Medical Center with researchers developing expert systems and neural networks, in order to create a hybrid method for medical diagnosis. The paper also considers new neural network architectures, including distributed ART {dART), a real-time model of parallel distributed pattern learning that permits fast as well as slow adaptation, without catastrophic forgetting. Local synaptic computations in the dART model quantitatively match the paradoxical phenomenon of Markram-Tsodyks [2] redistribution of synaptic efficacy, as a consequence of global system hypotheses.Office of Naval Research (N00014-95-1-0409, N00014-95-1-0657

    Combining Distributed and Localist Computations in Real-Time Networks

    Full text link
    In order to benefit from the advantages of localist coding, neural models that feature winner-take-all representations at the top level of a network hierarchy must still solve the computational problems inherent in distributed representations at the lower levels

    Default ARTMAP

    Full text link
    The default ARTMAP algorithm and its parameter values specified here define a ready-to-use general-purpose neural network system for supervised learning and recognition.Air Force Office of Scientific Research (F49620-01-1-0397, F49620-01-1-0423) Office of Naval Research (N00014-01-1-0624

    Neural Network Models of Learning and Memory: Leading Questions and an Emerging Framework

    Full text link
    Office of Naval Research and the Defense Advanced Research Projects Agency (N00014-95-1-0409, N00014-1-95-0657); National Institutes of Health (NIH 20-316-4304-5

    Adaptive Resonance: An Emerging Neural Theory of Cognition

    Full text link
    Adaptive resonance is a theory of cognitive information processing which has been realized as a family of neural network models. In recent years, these models have evolved to incorporate new capabilities in the cognitive, neural, computational, and technological domains. Minimal models provide a conceptual framework, for formulating questions about the nature of cognition; an architectural framework, for mapping cognitive functions to cortical regions; a semantic framework, for precisely defining terms; and a computational framework, for testing hypotheses. These systems are here exemplified by the distributed ART (dART) model, which generalizes localist ART systems to allow arbitrarily distributed code representations, while retaining basic capabilities such as stable fast learning and scalability. Since each component is placed in the context of a unified real-time system, analysis can move from the level of neural processes, including learning laws and rules of synaptic transmission, to cognitive processes, including attention and consciousness. Local design is driven by global functional constraints, with each network synthesizing a dynamic balance of opposing tendencies. The self-contained working ART and dART models can also be transferred to technology, in areas that include remote sensing, sensor fusion, and content-addressable information retrieval from large databases.Office of Naval Research and the defense Advanced Research Projects Agency (N00014-95-1-0409, N00014-1-95-0657); National Institutes of Health (20-316-4304-5

    Large-Scale Neural Systems for Vision and Cognition

    Full text link
    — Consideration of how people respond to the question What is this? has suggested new problem frontiers for pattern recognition and information fusion, as well as neural systems that embody the cognitive transformation of declarative information into relational knowledge. In contrast to traditional classification methods, which aim to find the single correct label for each exemplar (This is a car), the new approach discovers rules that embody coherent relationships among labels which would otherwise appear contradictory to a learning system (This is a car, that is a vehicle, over there is a sedan). This talk will describe how an individual who experiences exemplars in real time, with each exemplar trained on at most one category label, can autonomously discover a hierarchy of cognitive rules, thereby converting local information into global knowledge. Computational examples are based on the observation that sensors working at different times, locations, and spatial scales, and experts with different goals, languages, and situations, may produce apparently inconsistent image labels, which are reconciled by implicit underlying relationships that the network’s learning process discovers. The ARTMAP information fusion system can, moreover, integrate multiple separate knowledge hierarchies, by fusing independent domains into a unified structure. In the process, the system discovers cross-domain rules, inferring multilevel relationships among groups of output classes, without any supervised labeling of these relationships. In order to self-organize its expert system, the ARTMAP information fusion network features distributed code representations which exploit the model’s intrinsic capacity for one-to-many learning (This is a car and a vehicle and a sedan) as well as many-to-one learning (Each of those vehicles is a car). Fusion system software, testbed datasets, and articles are available from http://cns.bu.edu/techlab.Defense Advanced Research Projects Research Agency (Hewlett-Packard Company, DARPA HR0011-09-3-0001; HRL Laboratories LLC subcontract 801881-BS under prime contract HR0011-09-C-0011); Science of Learning Centers program of the National Science Foundation (SBE-0354378

    Spatial Pattern Learning, Catastophic Forgetting and Optimal Rules of Synaptic Transmission

    Full text link
    It is a neural network truth universally acknowledged, that the signal transmitted to a target node must be equal to the product of the path signal times a weight. Analysis of catastrophic forgetting by distributed codes leads to the unexpected conclusion that this universal synaptic transmission rule may not be optimal in certain neural networks. The distributed outstar, a network designed to support stable codes with fast or slow learning, generalizes the outstar network for spatial pattern learning. In the outstar, signals from a source node cause weights to learn and recall arbitrary patterns across a target field of nodes. The distributed outstar replaces the outstar source node with a source field, of arbitrarily many nodes, where the activity pattern may be arbitrarily distributed or compressed. Learning proceeds according to a principle of atrophy due to disuse whereby a path weight decreases in joint proportion to the transmittcd path signal and the degree of disuse of the target node. During learning, the total signal to a target node converges toward that node's activity level. Weight changes at a node are apportioned according to the distributed pattern of converging signals three types of synaptic transmission, a product rule, a capacity rule, and a threshold rule, are examined for this system. The three rules are computationally equivalent when source field activity is maximally compressed, or winner-take-all when source field activity is distributed, catastrophic forgetting may occur. Only the threshold rule solves this problem. Analysis of spatial pattern learning by distributed codes thereby leads to the conjecture that the optimal unit of long-term memory in such a system is a subtractive threshold, rather than a multiplicative weight.Advanced Research Projects Agency (ONR N00014-92-J-4015); Office of Naval Research (N00014-91-J-4100, N00014-92-J-1309

    Distributed ART Networks for Learning, Recognition, and Prediction

    Full text link
    Adaptive resonance theory (ART) models have been used for learning and prediction in a wide variety of applications. Winner-take-all coding allows these networks to maintain stable memories, but this type of code representation can cause problems such as category proliferation with fast learning and a noisy training set. A new class of ART models with an arbitrarily distributed code representation is outlined here. With winner-take-all coding, the unsupervised distributed ART model (dART) reduces to fuzzy ART and the supervised distributed ARTMAP model (dARTMAP) reduces to fuzzy ARTMAP. dART automatically apportions learned changes according to the degree of activation of each node, which permits fast as well as slow learning with compressed or distributed codes. Distributed ART models replace the traditional neural network path weight with a dynamic weight equal to the rectified difference between coding node activation and an adaptive threshold. Dynamic weights that project to coding nodes obey a distributed instar leaning law and those that originate from coding nodes obey a distributed outstar learning law. Inputs activate distributed codes through phasic and tonic signal components with dual computational properties, and a parallel distributed match-reset-search process helps stabilize memory.National Science Foundation (IRI 94-0 1659); Office of Naval Research (N00014-95-1-0409, N00014-95-0657

    Fuzzy ART

    Full text link
    Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART and supervised fuzzy ARTMAP synthesize fuzzy logic and ART networks by exploiting the formal similarity between the computations of fuzzy subsethood and the dynamics of ART category choice, search, and learning. Fuzzy ART self-organizes stable recognition categories in response to arbitrary sequences of analog or binary input patterns. It generalizes the binary ART 1 model, replacing the set-theoretic: intersection (∩) with the fuzzy intersection (∧), or component-wise minimum. A normalization procedure called complement coding leads to a symmetric: theory in which the fuzzy inter:>ec:tion and the fuzzy union (∨), or component-wise maximum, play complementary roles. Complement coding preserves individual feature amplitudes while normalizing the input vector, and prevents a potential category proliferation problem. Adaptive weights :otart equal to one and can only decrease in time. A geometric interpretation of fuzzy AHT represents each category as a box that increases in size as weights decrease. A matching criterion controls search, determining how close an input and a learned representation must be for a category to accept the input as a new exemplar. A vigilance parameter (p) sets the matching criterion and determines how finely or coarsely an ART system will partition inputs. High vigilance creates fine categories, represented by small boxes. Learning stops when boxes cover the input space. With fast learning, fixed vigilance, and an arbitrary input set, learning stabilizes after just one presentation of each input. A fast-commit slow-recode option allows rapid learning of rare events yet buffers memories against recoding by noisy inputs. Fuzzy ARTMAP unites two fuzzy ART networks to solve supervised learning and prediction problems. A Minimax Learning Rule controls ARTMAP category structure, conjointly minimizing predictive error and maximizing code compression. Low vigilance maximizes compression but may therefore cause very different inputs to make the same prediction. When this coarse grouping strategy causes a predictive error, an internal match tracking control process increases vigilance just enough to correct the error. ARTMAP automatically constructs a minimal number of recognition categories, or "hidden units," to meet accuracy criteria. An ARTMAP voting strategy improves prediction by training the system several times using different orderings of the input set. Voting assigns confidence estimates to competing predictions given small, noisy, or incomplete training sets. ARPA benchmark simulations illustrate fuzzy ARTMAP dynamics. The chapter also compares fuzzy ARTMAP to Salzberg's Nested Generalized Exemplar (NGE) and to Simpson's Fuzzy Min-Max Classifier (FMMC); and concludes with a summary of ART and ARTMAP applications.Advanced Research Projects Agency (ONR N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100

    Distributed Activation, Search, and Learning by ART and ARTMAP Neural Networks

    Full text link
    Adaptive resonance theory (ART) models have been used for learning and prediction in a wide variety of applications. Winner-take-all coding allows these networks to maintain stable memories, but this type of code representation can cause problems such as category proliferation with fast learning and a noisy training set. A new class of ART models with an arbitrarily distributed code representation is outlined here. With winner-take-all coding, the unsupervised distributed ART model (dART) reduces to fuzzy ART and the supervised distributed ARTMAP model (dARTMAP) reduces to fuzzy ARTMAP. dART automatically apportions learned changes according to the degree of activation of each node, which permits fast as well as slow learning with compressed or distributed codes. Distributed ART models replace the traditional neural network path weight with a dynamic weight equal to the rectified difference between coding node activation and an adaptive threshold. Dynamic weights that project to coding nodes obey a distributed instar leaning law and those that originate from coding nodes obey a distributed outstar learning law. Inputs activate distributed codes through phasic and tonic signal components with dual computational properties, and a parallel distributed match-reset-search process helps stabilize memory.National Science Foundation (IRI 94-0 1659); Office of Naval Research (N00014-95-1-0409, N00014-95-0657
    • …
    corecore