29 research outputs found
Cavity Microwave Searches for Cosmological Axions
This chapter will cover the search for dark matter axions based on microwave cavity experiments proposed by Pierre Sikivie. We will start with a brief overview of halo dark matter and the axion as a candidate. The principle of resonant conversion of axions in an external magnetic field will be described as well as practical considerations in optimizing the experiment as a signal-to-noise problem. A major focus of this chapter will be the two complementary strategies for ultra-low noise detection of the microwave photons--the 'photon-as-wave' approach (i.e. conventional heterojunction amplifiers and soon to be quantum-limited SQUID devices), and 'photon-as-particle' (i.e. Rydberg-atom single-quantum detection). Experimental results will be presented; these experiments have already reached well into the range of sensitivity to exclude plausible axion models, for limited ranges of mass. The section will conclude with a discussion of future plans and challenges for the microwave cavity experiment
A Search for Scalar Chameleons with ADMX
Scalar fields with a "chameleon" property, in which the effective particle
mass is a function of its local environment, are common to many theories beyond
the standard model and could be responsible for dark energy. If these fields
couple weakly to the photon, they could be detectable through the "afterglow"
effect of photon-chameleon-photon transitions. The ADMX experiment was used in
the first chameleon search with a microwave cavity to set a new limit on scalar
chameleon-photon coupling excluding values between 2*10^9 and 5*10^14 for
effective chameleon masses between 1.9510 and 1.9525 micro-eV.Comment: 4 pages, 3 figure
A SQUID-based microwave cavity search for dark-matter axions
Axions in the micro eV mass range are a plausible cold dark matter candidate
and may be detected by their conversion into microwave photons in a resonant
cavity immersed in a static magnetic field. The first result from such an axion
search using a superconducting first-stage amplifier (SQUID) is reported. The
SQUID amplifier, replacing a conventional GaAs field-effect transistor
amplifier, successfully reached axion-photon coupling sensitivity in the band
set by present axion models and sets the stage for a definitive axion search
utilizing near quantum-limited SQUID amplifiers.Comment: 4 pages, 5 figures, submitted to PR
Quark mass uncertainties revive KSVZ axion dark matter
The Kaplan-Manohar ambiguity in light quark masses allows for a larger
uncertainty in the ratio of up to down quark masses than naive estimates from
the chiral Lagrangian would indicate. We show that it allows for a relaxation
of experimental bounds on the QCD axion, specifically KSVZ axions in the eV mass range composing 100% of the galactic dark matter halo can evade the
experimental limits placed by the ADMX collaboration.Comment: 9 pages, 5 figure
Move of a large but delicate apparatus on a trailer with air-ride suspension
When valuable delicate goods are shipped by truck, attention must be paid to
vibrations that may cause damage. We present a case study of moving an
extremely delicate 6230-kg superconducting magnet, immersed in liquid nitrogen,
from Livermore, CA to Seattle, WA showing the steps of fatigue analysis of the
load, a test move, and acceleration monitoring of the final move to ensure a
successful damage-free transport
Design and performance of the ADMX SQUID-based microwave receiver
The Axion Dark Matter eXperiment (ADMX) was designed to detect ultra-weakly
interacting relic axion particles by searching for their conversion to
microwave photons in a resonant cavity positioned in a strong magnetic field.
Given the extremely low expected axion-photon conversion power we have
designed, built and operated a microwave receiver based on a Superconducting
QUantum Interference Device (SQUID). We describe the ADMX receiver in detail as
well as the analysis of narrow band microwave signals. We demonstrate the
sustained use of a SQUID amplifier operating between 812 and 860 MHz with a
noise temperature of 1 K. The receiver has a noise equivalent power of
1.1x10^-24 W/sqrt(Hz) in the band of operation for an integration time of
1.8x10^3 s.Comment: 8 pages, 12 figures, Submitted to Nuclear Inst. and Methods in
Physics Research,