366 research outputs found

    Maximal Neutrino Mixing from a Minimal Flavor Symmetry

    Get PDF
    We study a number of models, based on a non-Abelian discrete group, that successfully reproduce the simple and predictive Yukawa textures usually associated with U(2) theories of flavor. These models allow for solutions to the solar and atmospheric neutrino problems that do not require altering successful predictions for the charged fermions or introducing sterile neutrinos. Although Yukawa matrices are hierarchical in the models we consider, the mixing between second- and third-generation neutrinos is naturally large. We first present a quantitative analysis of a minimal model proposed in earlier work, consisting of a global fit to fermion masses and mixing angles, including the most important renormalization group effects. We then propose two new variant models: The first reproduces all important features of the SU(5)xU(2) unified theory with neither SU(5) nor U(2). The second demonstrates that discrete subgroups of SU(2) can be used in constructing viable supersymmetric theories of flavor without scalar universality even though SU(2) by itself cannot.Comment: 34 pages LaTeX, 1 eps figure, minor revisions and references adde

    A Supersymmetric Theory of Flavor and R Parity

    Full text link
    We construct a renormalizable, supersymmetric theory of flavor and RR parity based on the discrete flavor group (S3)3(S_3)^3. The model can account for all the masses and mixing angles of the Standard Model, while maintaining sufficient squark degeneracy to circumvent the supersymmetric flavor problem. By starting with a simpler set of flavor symmetry breaking fields than we have suggested previously, we construct an economical Froggatt-Nielsen sector that generates the desired elements of the fermion Yukawa matrices. With the particle content above the flavor scale completely specified, we show that all renormalizable RR-parity-violating interactions involving the ordinary matter fields are forbidden by the flavor symmetry. Thus, RR parity arises as an accidental symmetry in our model. Planck-suppressed operators that violate RR parity, if present, can be rendered harmless by taking the flavor scale to be 8×1010\lesssim 8 \times 10^{10} GeV.Comment: 28 pp. LaTeX, 1 Postscript Figur

    Discerning Noncommutative Extra Dimensions

    Full text link
    Experimental limits on the violation of four-dimensional Lorentz invariance imply that noncommutativity among ordinary spacetime dimensions must be small. Noncommutativity among extra, compactified spatial dimensions, however, is far less constrained and may have discernable collider signatures. Here we study the experimental consequences of noncommutative QED in six dimensions, with noncommutativity restricted to a TeV-scale bulk. Assuming the orbifold T^2/Z_2, we construct the effective four-dimensional theory and study interactions unique to the noncommutative case. New vertices involving the Kaluza-Klein (KK) excitations of the photon yield order 100% corrections to the pair production and to the decays of some of the lighter modes. We show that these effects are difficult to resolve at the LHC, but are likely within the reach of a future Very Large Hadron Collider (VLHC).Comment: 20 pages LaTeX, 8 eps figures (minor revisions, version to appear in Phys. Rev. D

    Gauge Unification and Dynamical Supersymmetry Breaking

    Get PDF
    Under the assumption that all the gauge groups in supersymmetric theories unify at the fundamental scale, the numbers and the mass scales of messenger quarks and leptons, as well as the beta-function coefficient of the sector for dynamical supersymmetry breaking are constrained depending on various gauge mediation mechanisms. For this, we use one-loop renormalization group equations and draw constraints on the scales in each gauge mediation model.Comment: 13 pages, Latex. Improved significantly, reference expended, disagreement with Dubovsky, et.al. [hep-ph/9707357] clarifie

    The event generator DECAY4 for simulation of double beta processes and decay of radioactive nuclei

    Full text link
    The computer code DECAY4 is developed to generate initial energy, time and angular distributions of particles emitted in radioactive decays of nuclides and nuclear (atomic) deexcitations. Data for description of nuclear and atomic decay schemes are taken from the ENSDF and EADL database libraries. The examples of use of the DECAY4 code in several underground experiments are described.Comment: 8 pages, 1 fi

    Neutrino mass matrix with U(2) flavor symmetry and neutrino oscillations

    Full text link
    The three neutrino mass matrices in the SU(5)×U(2)SU(5)\times U(2) model are studied focusing on the neutrino oscillation experiments. The atmospheric neutrino anomaly could be explained by the large νμντ\nu_{\mu} - \nu_{\tau} oscillation. The long baseline experiments are expected to detect signatures of the neutrino oscillation even if the atmospheric neutrino anomaly is not due to the neutrino oscillation. However, the model cannot solve the solar neutrino deficit while it could be reconciled with the LSND data.Comment: 12 pages, LaTex file, to be published in PR

    Next-to-Minimal Supersymmetric Standard Model with the Gauge Mediation of Supersymmetry Breaking

    Full text link
    We study the Next-to-Minimal Supersymmetric Standard Model (NMSSM) as the simplest candidate solution to the μ\mu-problem in the context of the gauge mediation of supersymmetry breaking (GMSB). We first review various proposals to solve the μ\mu-problem in models with the GMSB. We find none of them entirely satisfactory and point out that many of the scenarios still lack quantitative studies, and motivate the NMSSM as the simplest possible solution. We then study the situation in the Minimal Supersymmetric Standard Model (MSSM) with the GMSB and find that an order 10% cancellation is necessary between the μ\mu-parameter and the soft SUSY-breaking parameters to correctly reproduce MZM_Z. Unfortunately, the NMSSM does not to give a phenomenologically viable solution to the μ\mu-problem. We present quantitative arguments which apply both for the low-energy and high-energy GMSB and prove that the NMSSM does not work for either case. Possible modifications to the NMSSM are then discussed. The NMSSM with additional vector-like quarks works phenomenologically, but requires an order a few percent cancellation among parameters. We point out that this cancellation has the same origin as the cancellation required in the MSSM.Comment: 36 pages, LaTeX, epsf.sty, 5 figures, references added, comments on some other papers based on our misundestanding corrected, none of our results change

    Gauge coupling unification with large extra dimensions

    Get PDF
    We make a detailed study of the unification of gauge couplings in the MSSM with large extra dimensions. We find some scenarios where unification can be achieved (with the strong coupling constant at the Z mass within one standard deviation of the experimental value) with both the compactification scale and the SUSY breaking scale in the few TeV range. No enlargement of the gauge group or particle content is needed. One particularly interesting scenario is when the SUSY breaking scale is larger than the compactification scale, but both are small enough to be probed at the CERN LHC. Unification in two scales scenarios is also investigated and found to give results within the LHC.Comment: 17 pages, 3 figures, some discussions added, few additional references included. Version to appear in Phys. Rev.

    Fermion Mass Hierarchies and Small Mixing Angles from Extra Dimensions

    Get PDF
    In this paper we study renormalization-group evolutions of Yukawa matrices enhanced by Kaluza-Klein excited modes and analyze their infrared fixed-point structure. We derive necessary conditions to obtain hierarchies between generations on the fixed point. These conditions restrict how the fields in the models can extend to higher dimension. Several specific mechanisms to realize the conditions are presented. We also take account of generation mixing effects and find a scenario where the mixing angles become small at low energy even with large initial values at high-energy scale. A toy model is shown to lead realistic quark mass matrices.Comment: 23 pages, 7 figures, LaTeX, a supplementary explanation and references adde

    Negative Parity 70-plet Baryon Masses in the 1/Nc Expansion

    Get PDF
    The masses of the negative parity SU(6) 70-plet baryons are analyzed in the 1/Nc expansion to order 1/Nc and to first order in SU(3) breaking. At this level of precision there are twenty predictions. Among them there are the well known Gell-Mann Okubo and equal spacing relations, and four new relations involving SU(3) breaking splittings in different SU(3) multiplets. Although the breaking of SU(6) symmetry occurs at zeroth order in 1/Nc, it turns out to be small. The dominant source of the breaking is the hyperfine interaction which is of order 1/Nc. The spin-orbit interaction, of zeroth order in 1/Nc, is entirely fixed by the splitting between the singlet states Lambda(1405) and Lambda(1520), and the spin-orbit puzzle is solved by the presence of other zeroth order operators involving flavor exchange.Comment: 31 pages, 3 figure
    corecore