59 research outputs found

    Strongyloides ratti e S. stercoralis: efeitos de cambendazol, tiabendazol e mebendazol in vitro

    Get PDF
    The effects of in vitro incubation of three henzimidazole anthelmintics, thiabendazole, mebendazole and cambendazole on Strongyloides were compared. No drug affected hatching of S. ratti eggs or the viability of infective larvae or parasitic adult worms, but all three inhibited moulting of S. ratti larvae. In addition, cambendazole, but not thiabendazole or mebendazole, impaired the viability of S. ratti first- and second-stage larvae. The three drugs had no effect on isolated S. stercorais free-living adult worms, but they all prevented development of S. stercoralis rhabditiform larvae. Thiabendazole and mebendazole had no effect on the infectivity of either S. ratti or S. stercoralis infective larvae, but infection with these worms was abrogated by prior incubation with cambendazole. These results indicate that cambendazole acts in a different manner to the other two drugs. Since it is active against larvae migrating through the tissues, it is potentially of much greater value than thiabendazole or mebendazole in the therapy of strongyloidiasis.Os efeitos da incubação de três antihelmínticos, tiabendazol, mebendazol e cambendazol sobre Strongyloides foram comparados. Nenhuma droga afetou a eclosão dos ovos de S. ratti ou a viabilidade de larvas infectantes ou vermes adultos parasitários, mas todas as três inibiram a formação de larvas de S. ratti. Além disso, cambendazol, mas não tiabendazol ou mebendazol, diminuiu a viabilidade de larvas de primeiro e segundo estágio de S. ratti. As três drogas não tiveram efeito sobre vermes adultos de vida livre isolados, de S. stercoralis, mas todas evitaram o desenvolvimento de larvas rabditiformes de S. stercoralis. Tiabenda zol e mebendazol não tiveram efeito sobre a infectividade de larvas infectantes de S. ratti ou de S. stercoralis, mas a infecção com esses vermes foi anulada por incubação prévia com cambendazol. Esses resultados indicam que cambendazol age de modo diferente das outras duas drogas. Uma vez que ele é ativo contra lar vas migrando através dos tecidos, é potencial mente de muito maior valor que o tia bendazol ou mebendazol na terapêutica da esbrongiloidíase

    Identification Of A Germline F692L Drug Resistance Variant In Cis With Flt3-ITD In Knock-In Mice

    Get PDF
    Letter to the Editor.-- Dovey, Oliver M. et al.Internal tandem duplication (ITD) mutations in the juxtamembrane domain of the fms-like tyrosine kinase 3 (FLT3) gene occur in approximately one quarter of cases of acute myeloid leukemia (AML), are associated with constitutive activation of the kinase and confer a poor prognosis.BC is funded by the >China Scholarship Council> for his visiting studies in UK. AM is funded by the Kay Kendall Leukaemia Fund project grant. CG was funded by a Bloodwise Clinical Research Training Fellowship. IV is funded by Spanish Ministerio de Economía y Competitividad subprograma Ramón y Cajal. We thank Servicio Santander Supercomputación for their support. OMD, JLC and GSV are funded by a Wellcome Trust Senior Fellowship in Clinical Science (WT095663MA) and this work was also funded by the Wellcome Trust Sanger InstitutePeer Reviewe

    Identification Of A Germline F692L Drug Resistance Variant In Cis With Flt3-ITD In Knock-In Mice

    Get PDF
    Letter to the Editor.-- Dovey, Oliver M. et al.Internal tandem duplication (ITD) mutations in the juxtamembrane domain of the fms-like tyrosine kinase 3 (FLT3) gene occur in approximately one quarter of cases of acute myeloid leukemia (AML), are associated with constitutive activation of the kinase and confer a poor prognosis.BC is funded by the >China Scholarship Council> for his visiting studies in UK. AM is funded by the Kay Kendall Leukaemia Fund project grant. CG was funded by a Bloodwise Clinical Research Training Fellowship. IV is funded by Spanish Ministerio de Economía y Competitividad subprograma Ramón y Cajal. We thank Servicio Santander Supercomputación for their support. OMD, JLC and GSV are funded by a Wellcome Trust Senior Fellowship in Clinical Science (WT095663MA) and this work was also funded by the Wellcome Trust Sanger InstitutePeer Reviewe

    Characterization of gene mutations and copy number changes in acute myeloid leukemia using a rapid target enrichment protocol

    Get PDF
    Prognostic stratification is critical for making therapeutic decisions and maximizing survival of patients with acute myeloid leukemia. Advances in the genomics of acute myeloid leukemia have identified several recurrent gene mutations whose prognostic impact is being deciphered. We used HaloPlex target enrichment and Illumina-based next generation sequencing to study 24 recurrently mutated genes in 42 samples of acute myeloid leukemia with a normal karyotype. Read depth varied between and within genes for the same sample, but was predictable and highly consistent across samples. Consequently, we were able to detect copy number changes, such as an interstitial deletion of BCOR, three MLL partial tandem duplications, and a novel KRAS amplification. With regards to coding mutations, we identified likely oncogenic variants in 41 of 42 samples. NPM1 mutations were the most frequent, followed by FLT3, DNMT3A and TET2. NPM1 and FLT3 indels were reported with good efficiency. We also showed that DNMT3A mutations can persist post-chemotherapy and in 2 cases studied at diagnosis and relapse, we were able to delineate the dynamics of tumor evolution and give insights into order of acquisition of variants. HaloPlex is a quick and reliable target enrichment method that can aid diagnosis and prognostic stratification of acute myeloid leukemia patients.This project was funded by the Wellcome Trust. NB is a fellow of the European Hematology Association and was supported by the Academy of Medical Sciences. EP is a European Hematology Association Advanced Research Fellow. GV is a Wellcome Trust Senior Fellow in Clinical Science. IV is funded by Spanish Ministerio de Economía y Competitividad subprograma Ramón y Cajal

    Development and validation of a comprehensive genomic diagnostic tool for myeloid malignancies.

    Get PDF
    The diagnosis of hematologic malignancies relies on multidisciplinary workflows involving morphology, flow cytometry, cytogenetic, and molecular genetic analyses. Advances in cancer genomics have identified numerous recurrent mutations with clear prognostic and/or therapeutic significance to different cancers. In myeloid malignancies, there is a clinical imperative to test for such mutations in mainstream diagnosis; however, progress toward this has been slow and piecemeal. Here we describe Karyogene, an integrated targeted resequencing/analytical platform that detects nucleotide substitutions, insertions/deletions, chromosomal translocations, copy number abnormalities, and zygosity changes in a single assay. We validate the approach against 62 acute myeloid leukemia, 50 myelodysplastic syndrome, and 40 blood DNA samples from individuals without evidence of clonal blood disorders. We demonstrate robust detection of sequence changes in 49 genes, including difficult-to-detect mutations such as FLT3 internal-tandem and mixed-lineage leukemia (MLL) partial-tandem duplications, and clinically significant chromosomal rearrangements including MLL translocations to known and unknown partners, identifying the novel fusion gene MLL-DIAPH2 in the process. Additionally, we identify most significant chromosomal gains and losses, and several copy neutral loss-of-heterozygosity mutations at a genome-wide level, including previously unreported changes such as homozygosity for DNMT3A R882 mutations. Karyogene represents a dependable genomic diagnosis platform for translational research and for the clinical management of myeloid malignancies, which can be readily adapted for use in other cancers

    Molecular synergy underlies the co-occurrence patterns and phenotype of NPM1-mutant acute myeloid leukemia

    Get PDF
    NPM1 mutations define the commonest subgroup of acute myeloid leukemia (AML) and frequently co-occur with FLT3 internal tandem duplications (ITD) or, less commonly, NRAS or KRAS mutations. Co-occurrence of mutant NPM1 with FLT3-ITD carries a significantly worse prognosis than NPM1-RAS combinations. To understand the molecular basis of these observations, we compare the effects of the 2 combinations on hematopoiesis and leukemogenesis in knock-in mice. Early effects of these mutations on hematopoiesis show that compound Npm1cA/+;NrasG12D/+ or Npm1cA;Flt3ITD share a number of features: Hox gene overexpression, enhanced self-renewal, expansion of hematopoietic progenitors, and myeloid differentiation bias. However, Npm1cA;Flt3ITD mutants displayed significantly higher peripheral leukocyte counts, early depletion of common lymphoid progenitors, and a monocytic bias in comparison with the granulocytic bias in Npm1cA/+;NrasG12D/+ mutants. Underlying this was a striking molecular synergy manifested as a dramatically altered gene expression profile in Npm1cA;Flt3ITD, but not Npm1cA/+;NrasG12D/+, progenitors compared with wild-type. Both double-mutant models developed high-penetrance AML, although latency was significantly longer with Npm1cA/+;NrasG12D/+. During AML evolution, both models acquired additional copies of the mutant Flt3 or Nras alleles, but only Npm1cA/+;NrasG12D/+ mice showed acquisition of other human AML mutations, including IDH1 R132Q. We also find, using primary Cas9-expressing AMLs, that Hoxa genes and selected interactors or downstream targets are required for survival of both types of double-mutant AML. Our results show that molecular complementarity underlies the higher frequency and significantly worse prognosis associated with NPM1c/FLT3-ITD vs NPM1/NRAS-G12D-mutant AML and functionally confirm the role of HOXA genes in NPM1c-driven AML

    Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis.

    Get PDF
    Clonal hemopoiesis driven by leukemia-associated gene mutations can occur without evidence of a blood disorder. To investigate this phenomenon, we interrogated 15 mutation hot spots in blood DNA from 4,219 individuals using ultra-deep sequencing. Using only the hot spots studied, we identified clonal hemopoiesis in 0.8% of individuals under 60, rising to 19.5% of those ≥90 years, thus predicting that clonal hemopoiesis is much more prevalent than previously realized. DNMT3A-R882 mutations were most common and, although their prevalence increased with age, were found in individuals as young as 25 years. By contrast, mutations affecting spliceosome genes SF3B1 and SRSF2, closely associated with the myelodysplastic syndromes, were identified only in those aged >70 years, with several individuals harboring more than one such mutation. This indicates that spliceosome gene mutations drive clonal expansion under selection pressures particular to the aging hemopoietic system and explains the high incidence of clonal disorders associated with these mutations in advanced old age

    A genetic progression model of Braf(V600E)-induced intestinal tumorigenesis reveals targets for therapeutic intervention.

    Get PDF
    We show that BRAF(V600E) initiates an alternative pathway to colorectal cancer (CRC), which progresses through a hyperplasia/adenoma/carcinoma sequence. This pathway underlies significant subsets of CRCs with distinctive pathomorphologic/genetic/epidemiologic/clinical characteristics. Genetic and functional analyses in mice revealed a series of stage-specific molecular alterations driving different phases of tumor evolution and uncovered mechanisms underlying this stage specificity. We further demonstrate dose-dependent effects of oncogenic signaling, with physiologic Braf(V600E) expression being sufficient for hyperplasia induction, but later stage intensified Mapk-signaling driving both tumor progression and activation of intrinsic tumor suppression. Such phenomena explain, for example, the inability of p53 to restrain tumor initiation as well as its importance in invasiveness control, and the late stage specificity of its somatic mutation. Finally, systematic drug screening revealed sensitivity of this CRC subtype to targeted therapeutics, including Mek or combinatorial PI3K/Braf inhibition
    • …
    corecore