12 research outputs found

    The acute effects of dietary carbohydrate reduction on postprandial responses of non-esterified fatty acids and triglycerides: a randomized trial

    Get PDF
    Abstract Background Postprandial non-esterified fatty acid (NEFA) and triglyceride (TG) responses are increased in subjects with type 2 diabetes mellitus (T2DM) and may impair insulin action and increase risk of cardiovascular disease and death. Dietary carbohydrate reduction has been suggested as non-pharmacological therapy for T2DM, but the acute effects on NEFA and TG during subsequent meals remain to be investigated. Methods Postprandial NEFA and TG responses were assessed in subjects with T2DM by comparing a carbohydrate-reduced high-protein (CRHP) diet with a conventional diabetes (CD) diet in an open-label, randomized, cross-over study. Each diet was consumed on two consecutive days, separated by a wash-out period. The iso-caloric CRHP/CD diets contained 31/54 E% from carbohydrate, 29/16 E% energy from protein and 40/30 E% from fat, respectively. Sixteen subjects with well-controlled T2DM (median HbA1c 47 mmol/mol, (37–67 mmol/mol) and BMI 30 ± 4.4 kg/m2) participated in the study. NEFA and TG were evaluated following breakfast and lunch. Results NEFA net area under curve (AUC) was increased by 97 ± 38 μmol/Lx270 min (p = 0.024) after breakfast but reduced by 141 ± 33 μmol/Lx180 min (p < 0.001) after lunch on the CRHP compared with CD diet. Likewise, TG net AUC was increased by 80 ± 28 μmol/Lx270 min (p = 0.012) after breakfast but reduced by 320 ± 60 μmol/Lx180 min (p < 0.001) after lunch on the CRHP compared with CD diet. Conclusions In well-controlled T2DM a modest reduction of dietary carbohydrate with a corresponding increase in protein and fat acutely reduced postprandial serum NEFA suppression and increased serum TG responses after a breakfast meal but had the opposite effect after a lunch meal. The mechanism behind this second-meal phenomenon of CRHP diet on important risk factors for aggravating T2DM and cardiovascular disease awaits further investigation. Trial registration The study was registered at clinicaltrials.gov ID: NCT02472951. https://clinicaltrials.gov/ct2/show/NCT02472951. Registered June 16, 2015

    Acute Effects of Dietary Carbohydrate Restriction on Glycemia, Lipemia and Appetite Regulating Hormones in Normal-Weight to Obese Subjects

    Get PDF
    Postprandial responses to food are highly dependent on the macronutrient composition of the diet. We investigated the acute effects of transition from the recommended moderately high carbohydrate (HC) diet towards a carbohydrate-reduced high-protein (CRHP) diet on postprandial glycemia, insulinemia, lipemia, and appetite-regulating hormones in non-diabetic adults. Fourteen subjects, including five males (Mean &plusmn; SD: age 62 &plusmn; 6.5; BMI 32 &plusmn; 7.6 kg/m2; hemoglobin A1c (HbA1c) 40 &plusmn; 3.0 mmol/mol; HOMA2-IR 2.1 &plusmn; 0.9) were included in this randomized, cross-over study. Iso-caloric diets were consumed for two consecutive days with a median wash-out period of 21 days (range 2&ndash;8 weeks) between diets (macronutrient energy composition: CRHP/HC; 31%/54% carbohydrate, 29%/16% protein, 40%/30% fat). Postprandial glucose, insulin secretion rate (ISR), triglycerides (TGs), non-esterified fatty acids (NEFAs), and satiety ratings were assessed after ingestion of breakfast (Br) and lunch (Lu), and gut hormones and glucagon were assessed after ingestion of Br. Compared with the HC diet, the CRHP diet reduced peak glucose concentrations (Br 11%, p = 0.024; Lu 11%, p &lt; 0.001), glucose excursions (Br 80%, p = 0.20; Lu 85%, p &lt; 0.001), and ISR (Br 31%; Lu 64%, both p &lt; 0.001) whereas CRHP, as compared with HC, increased glucagon-like peptide-1 (Br 27%, p = 0.015) and glucagon values (Br 249%, p &lt; 0.001). NEFA and TG levels increased in the CRHP diet as compared with the HC diet after Br, but no difference was found after Lu (NEFA Br 22%, p &lt; 0.01; TG Br 42%, p = 0.012). Beta-cell glucose sensitivity, insulin clearance, cholecystokinin values, and subjective satiety ratings were unaffected. It is possible to achieve a reduction in postprandial glycemia and insulin without a deleterious effect on beta-cell glucose sensitivity by substituting part of dietary carbohydrate with iso-caloric protein and fat in subjects without type 2 diabetes mellitus (T2DM). The metabolic effects are more pronounced after the second meal
    corecore