31 research outputs found

    Laser capture microdissection (LCM) and whole genome amplification (WGA) of DNA from normal breast tissue --- optimization for genome wide array analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Laser capture microdissection (LCM) can be applied to tissues where cells of interest are distinguishable from surrounding cell populations. Here, we have optimized LCM for fresh frozen normal breast tissue where large amounts of fat can cause problems during microdissection. Since the amount of DNA needed for genome wide analyses, such as single nucleotide polymorphism (SNP) arrays, is often greater than what can be obtained from the dissected tissue, we have compared three different whole genome amplification (WGA) kits for amplification of DNA from LCM material. In addition, the genome wide profiling methods commonly used today require extremely high DNA quality compared to PCR based techniques and DNA quality is thus critical for successful downstream analyses.</p> <p>Findings</p> <p>We found that by using FrameSlides without glass backing for LCM and treating the slides with acetone after staining, the problems caused by excessive fat could be significantly decreased. The amount of DNA obtained after extraction from LCM tissue was not sufficient for direct SNP array analysis in our material. However, the two WGA kits based on Phi29 polymerase technology (Repli-g<sup>® </sup>(Qiagen) and GenomiPhi (GE Healthcare)) gave relatively long amplification products, and amplified DNA from Repli-g<sup>® </sup>gave call rates in the subsequent SNP analysis close to those from non-amplified DNA. Furthermore, the quality of the input DNA for WGA was found to be essential for successful SNP array results and initial DNA fragmentation problems could be reduced by switching from a regular halogen lamp to a VIS-LED lamp during LCM.</p> <p>Conclusions</p> <p>LCM must be optimized to work satisfactorily in difficult tissues. We describe a work flow for fresh frozen normal breast tissue where fat is inclined to cause problems if sample treatment is not adapted to this tissue. We also show that the Phi29-based Repli-g<sup>® </sup>WGA kit (Qiagen) is a feasible approach to amplify DNA of high quality prior to genome wide analyses such as SNP profiling.</p

    Phosphorylation of ERα and HIF-1α in breast cancer with focus on tamoxifen response and links to kinase activation

    No full text
    Anti-oestrogens are commonly used in adjuvant breast cancer treatment and for a long time tamoxifen has been the main endocrine treatment. Patients who are eligibly for endocrine treatment are selected by the tumour-specific expression of oestrogen receptor (ER) and approximately 70 % of all breast cancer patients are classified as ER positive. However, resistance to tamoxifen is common and several patients will experience tumour relapse and might also die from their disease. This stresses the need for identifying treatment predictive factors that can guide clinicians during treatment decisions. We have identified biomarkers that were associated with tamoxifen response in a material of premenopausal breast tumours. One of the markers is Pak1, a serine/threonine protein kinase, of which high expression and particular nuclear localisation was associated with poor tamoxifen response. Two other biomarkers are different ER phosphorylations at serine 305 and serine 118; ERS305-P and ERS118-P, respectively. Tumours that were positive for ERS305 were associated with poor tamoxifen response while tumours with high expression of ERS-118 were associated with a good response. Furthermore, we have studied associations between the activated kinases responsible for these ER phosphorylations and tamoxifen response. Our observations led us to conclude that ERS118-P and ERS305-P are better tamoxifen predictive factors than their respective phosphorylating kinases, and possibly, using a combination of the phosphorylations might be even more valuable in predicting the response. In addition, we have identified Pak1 as a regulator of the hypoxic response in breast cancer cells. More specifically, we have observed Pak1-mediated phosphorylation of the hypoxia inducible transcription factor 1α (HIF-1α). Silencing of Pak1 led to decreased HIF-1α levels and less transcriptional activity, suggesting that Pak1 phosphorylation stabilises HIF-1α and thereby increases HIF-1α’s ability to induce gene expression during tumour hypoxia

    Hypoxia and breast cancer: prognostic and therapeutic implications

    No full text
    Hypoxia affects many important processes in tumour progression and is a key feature in the tumour microenvironment that needs to be taken into account when evaluating prognostics and therapeutic options for cancer patients. Hypoxia-regulating proteins, i.e. hypoxia inducible factors (HIFs), and associated gene products have been linked to certain tumour behaviours and might be useful as prognostic and predictive markers. Recently, hypoxia-driven gene products have been launched as novel cancer treatment targets with the potential to increase tumour-specific effects. Breast cancer consists of a multitude of different diseases with certain common characteristics, but also clearly disparate behaviours and genetic alterations. In this review we will summarise the role of hypoxia in breast cancer and specifically outline the importance of hypoxia and HIF-1alpha regarding prognostic and treatment-specific implications

    Neuroblastoma aggressiveness in relation to sympathetic neuronal differentiation stage.

    No full text
    Neuroblastoma is a childhood malignancy of the sympathetic neuronal lineage. It is a rare disease, but since it is frequently diagnosed during infancy, neuroblastoma causes life-long medical follow up of those children that survive the disease. It was early recognized that a high tumor cell differentiation stage correlates to favorable clinical stage and positive clinical outcome. Today, highly differentiated tumors are surgically removed and not further treated. Cells of many established human neuroblastoma cell lines have the capacity to differentiate when stimulated properly, and these cell lines have been used as models for studying and understanding central concepts of tumor cell differentiation. One recent aspect of this issue is the observation that tumor cells can dedifferentiate and gain a stem cell-like phenotype during hypoxic conditions, which was first shown in neuroblastoma. Aberrant or blocked differentiation is a central aspect of neuroblastoma genesis. In this review we summarize known genetic and non-genetic events in neuroblastoma that might be coupled to an aberrant sympathetic neuronal differentiation and thereby indirectly influencing tumorigenesis and/or aggressive neuroblastoma behavior

    Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer

    Get PDF
    Insufficient tissue oxygenation, or hypoxia, contributes to tumor aggressiveness and has a profound impact on clinical outcomes in cancer patients. At decreased oxygen tensions, hypoxia-inducible factors (HIFs) 1 and 2 are stabilized and mediate a hypoxic response, primarily by acting as transcription factors. HIFs exert differential effects on tumor growth and affect important cancer hallmarks including cell proliferation, apoptosis, differentiation, vascularization/angiogenesis, genetic instability, tumor metabolism, tumor immune responses, and invasion and metastasis. As a consequence, HIFs mediate resistance to chemo- and radiotherapy and are associated with poor prognosis in cancer patients. Intriguingly, perivascular tumor cells can also express HIF-2α, thereby forming a "pseudohypoxic" phenotype that further contributes to tumor aggressiveness. Therefore, therapeutic targeting of HIFs in cancer has the potential to improve treatment efficacy. Different strategies to target hypoxic cancer cells and/or HIFs include hypoxia-activated prodrugs and inhibition of HIF dimerization, mRNA or protein expression, DNA binding capacity, and transcriptional activity. Here we review the functions of HIFs in the progression and treatment of malignant solid tumors. We also highlight how HIFs may be targeted to improve the management of patients with therapy-resistant and metastatic cancer

    Hypoxia, pseudohypoxia and cellular differentiation

    No full text
    Tumor hypoxia correlates to aggressive disease, and while this is explained by a variety of factors, one clue to understand this phenomena was the finding that hypoxia induces a de-differentiated, stem cell-like phenotype in neuroblastoma and breast tumor cells. The hypoxia inducible transcription factors (HIFs) are regulated at the translational level by fluctuating oxygen concentrations, but emerging data reveal that both HIF-1α and HIF-2α expression can be induced by aberrantly activated growth factor signaling independently of oxygen levels. Furthermore, HIF-2α is regulated by hypoxia also at the transcriptional level in neuroblastoma and glioma cells. In cultured tumor cells, HIF-2α is stabilized at physiological oxygen concentrations followed by induced expression of classical hypoxia-driven genes, resulting in a pseudohypoxic phenotype. In addition, in neuroblastoma and glioma specimens, a small subset of HIF-2α positive, HIF-1α negative, tumor cells is found adjacent to blood vessels, i.e. in areas with presumably adequate oxygenation. These tumor niches are thus pseudohypoxic, and the HIF-2α expressing cells present immature features. We have postulated that this niche in neuroblastomas encompass the tumor stem cells. Oncogenes or tumor suppressor genes associated with pseudohypoxia are frequently mutated or deleted in the germline, implicating that the pseudohypoxic phenotype indeed is tumorigenic. In summary, the hypoxic and pseudohypoxic phenotypes of solid tumors are attractive therapeutic targets

    Cyclin A1 expression and associations with disease characteristics in childhood acute lymphoblastic leukemia.

    No full text
    A critical cell cycle regulatory protein, cyclin A1, has been implicated in the development of acute myeloid leukemia (AML). Here, we have examined the expression and clinical significance of cyclin A1 in childhood acute lymphoblastic leukemia (ALL). Cyclin A1 was highly expressed in lymphoblastic leukemic cell lines and in 22 of 30 ALL patients (73%). Cyclin A1 expression correlated with patient age (P=0.006), but not with cytogenetic abnormalities. Patients with high levels of cyclin A1 had poorer event-free survival (57.9%) compared to patients with lower levels (75%). (c) 2005 Elsevier Ltd. All rights reserved
    corecore