13 research outputs found
Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state: a multicentre cohort study (SAM-COVID-19)
Objectives: The objective of this study was to estimate the association between tocilizumab or corticosteroids and the risk of intubation or death in patients with coronavirus disease 19 (COVID-19) with a hyperinflammatory state according to clinical and laboratory parameters.
Methods: A cohort study was performed in 60 Spanish hospitals including 778 patients with COVID-19 and clinical and laboratory data indicative of a hyperinflammatory state. Treatment was mainly with tocilizumab, an intermediate-high dose of corticosteroids (IHDC), a pulse dose of corticosteroids (PDC), combination therapy, or no treatment. Primary outcome was intubation or death; follow-up was 21 days. Propensity score-adjusted estimations using Cox regression (logistic regression if needed) were calculated. Propensity scores were used as confounders, matching variables and for the inverse probability of treatment weights (IPTWs).
Results: In all, 88, 117, 78 and 151 patients treated with tocilizumab, IHDC, PDC, and combination therapy, respectively, were compared with 344 untreated patients. The primary endpoint occurred in 10 (11.4%), 27 (23.1%), 12 (15.4%), 40 (25.6%) and 69 (21.1%), respectively. The IPTW-based hazard ratios (odds ratio for combination therapy) for the primary endpoint were 0.32 (95%CI 0.22-0.47; p < 0.001) for tocilizumab, 0.82 (0.71-1.30; p 0.82) for IHDC, 0.61 (0.43-0.86; p 0.006) for PDC, and 1.17 (0.86-1.58; p 0.30) for combination therapy. Other applications of the propensity score provided similar results, but were not significant for PDC. Tocilizumab was also associated with lower hazard of death alone in IPTW analysis (0.07; 0.02-0.17; p < 0.001).
Conclusions: Tocilizumab might be useful in COVID-19 patients with a hyperinflammatory state and should be prioritized for randomized trials in this situatio
Proyecto, investigación e innovación en urbanismo, arquitectura y diseño industrial
Actas de congresoLas VII Jornadas de Investigación “Encuentro y Reflexión” y I Jornadas de Investigación de becarios y doctorandos. Proyecto, investigación e innovación en Urbanismo, Arquitectura y Diseño Industrial se centraron en cuatro ejes: el proyecto; la dimensión tecnológica y la gestión; la dimensión social y cultural y la enseñanza en Arquitectura, Urbanismo y Diseño Industrial, sustentados en las líneas prioritarias de investigación definidas epistemológicamente en el Consejo Asesor de Ciencia y Tecnología de esta Universidad Nacional de Córdoba.
Con el objetivo de afianzar continuidad, formación y transferencia de métodos, metodología y recursos se incorporó becarios y doctorandos de los Institutos de investigación.
La Comisión Honoraria la integraron las tres Secretarias de Investigación de la Facultad, arquitectas Marta Polo, quien fundó y María del Carmen Franchello y Nora Gutiérrez Crespo quienes continuaron la tradición de la buena práctica del debate en la cotidianeidad de la propia Facultad.
Los textos que conforman las VII Jornadas son los avances y resultados de las investigaciones realizadas en el bienio 2016-2018.Fil: Novello, María Alejandra. Universidad Nacional de Córdoba. Facultad de Arquitectura, Urbanismo y Diseño; ArgentinaFil: Repiso, Luciana. Universidad Nacional de Córdoba. Facultad de Arquitectura, Urbanismo y Diseño; ArgentinaFil: Mir, Guillermo. Universidad Nacional de Córdoba. Facultad de Arquitectura, Urbanismo y Diseño; ArgentinaFil: Brizuela, Natalia. Universidad Nacional de Córdoba. Facultad de Arquitectura, Urbanismo y Diseño; ArgentinaFil: Herrera, Fernanda. Universidad Nacional de Córdoba. Facultad de Arquitectura, Urbanismo y Diseño; ArgentinaFil: Períes, Lucas. Universidad Nacional de Córdoba. Facultad de Arquitectura, Urbanismo y Diseño; ArgentinaFil: Romo, Claudia. Universidad Nacional de Córdoba. Facultad de Arquitectura, Urbanismo y Diseño; ArgentinaFil: Gordillo, Natalia. Universidad Nacional de Córdoba. Facultad de Arquitectura, Urbanismo y Diseño; ArgentinaFil: Andrade, Elena Beatriz. Universidad Nacional de Córdoba. Facultad de Arquitectura, Urbanismo y Diseño; Argentin
Industrial-scale microalgae pond primary dewatering chemistry for Energy-efficient autoflocculation
Industrial-scale microalgae production will likely require large energy-intensive technologies for both culture and biomass recovery; energy-efficient and cost-effective microalgae dewatering and water management are major challenges. Primary dewatering is typically achieved through flocculation followed by separation via settling or flotation. Flocculants are relatively expensive, and their presence can limit the reuse of de-oiled flocculated microalgae. Natural flocculation of microalgae—autoflocculation—occurs in response to changes in pH and water hardness and, if controlled, might lead to less-expensive “flocculant-free” dewatering. A better understanding of autoflocculation should also prompt higher yields by preventing unwanted autoflocculation. Autoflocculation is driven by double-layer coordination between microalgae, Ca+2 and Mg+2, and/or mineral surface precipitates of calcite, Mg(OH)2, and hydroxyapatite that form primarily at pH > 8. Combining surface complexation models that describe the interface of microalgae:water, calcite:water, Mg(OH)2:water, and hydroxyapatite:water allows optimal autoflocculation conditions—for example pH, Mg, Ca, and P levels—to be identified for a given culture medium
Supplementation with exogenous coenzyme Q10 to media for in vitro maturation and embryo culture fails to promote the developmental competence of porcine embryos
The coenzyme Q10 (CoQ10) is a potent antioxidant with critical protection role against cell oxidative stress, caused by the mitochondrial dysfunction. This study evaluated the effects of CoQ10 supplementation to in vitro maturation (IVM) or embryo culture media on the maturation, fertilization and subsequent embryonic development of pig oocytes and embryos. Maturation (Experiment 1) or embryo culture (Experiment 2) media were supplemented with 0 (control), 10, 25, 50 and 100 mu M CoQ10. The addition of 10-50 mu M CoQ10 to the IVM medium did not affect the percentage of MII oocytes nor the fertilization or the parameters of subsequent embryonic development. Exogenous CoQ10 in the culture medium neither did affect the development to the 2-4-cell stage nor rates of blastocyst formation. Moreover, the highest concentration of CoQ10 (100 mu M) in the maturation medium negatively affected blastocyst rates. In conclusion, exogenous CoQ10 supplementation of maturation or embryo culture media failed to improve the outcomes of our in vitro embryo production system and its use as an exogenous antioxidant should not be encouraged.Funding Agencies|Seneca Foundation, Murcia, SpainFundacion Seneca [20027/SF/16, 19892/GERM/15]; Junta de Comunidades de Castilla-La Mancha, SpainJunta de Castilla y Leon [SBPLY/17/180501/000500]; Ministry of Economy and Competitiveness [BES-2013-064087, BES-2016-077869]; MINECO-FEDER [AGL2015-69735-R]; Research Council FORMAS, Stockholm [2017-00946]</p
Supplementation with exogenous coenzyme Q10 to media for in vitro maturation and embryo culture fails to promote the developmental competence of porcine embryos
The coenzyme Q10 (CoQ10) is a potent antioxidant with critical protection role against cell oxidative stress, caused by the mitochondrial dysfunction. This study evaluated the effects of CoQ10 supplementation to in vitro maturation (IVM) or embryo culture media on the maturation, fertilization and subsequent embryonic development of pig oocytes and embryos. Maturation (Experiment 1) or embryo culture (Experiment 2) media were supplemented with 0 (control), 10, 25, 50 and 100 μM CoQ10. The addition of 10–50 μM CoQ10 to the IVM medium did not affect the percentage of MII oocytes nor the fertilization or the parameters of subsequent embryonic development. Exogenous CoQ10 in the culture medium neither did affect the development to the 2–4‐cell stage nor rates of blastocyst formation. Moreover, the highest concentration of CoQ10 (100 μM) in the maturation medium negatively affected blastocyst rates. In conclusion, exogenous CoQ10 supplementation of maturation or embryo culture media failed to improve the outcomes of our in vitro embryo production system and its use as an exogenous antioxidant should not be encouraged.We thank the Seneca Foundation, Murcia, Spain (Saavedra Fajardo Program; 20027/SF/16), and the Junta de Comunidades de Castilla‐La Mancha, Spain (PRT program; SBPLY/17/180501/000500), for co‐funding support of C Maside and the Ministry of Economy and Competitiveness (Madrid, Spain) for its grant‐based support of CA Martinez and JM Cambra (BES‐2013‐064087 and BES‐2016‐077869, respectively). This study was supported by MINECO‐FEDER (AGL2015‐69735‐R), Madrid, Spain, Seneca Foundation (19892/GERM/15), Murcia, Spain, and the Research Council FORMAS, Stockholm (Project 2017‐00946).Peer reviewe
Exogenous Melatonin in the Culture Medium Does Not Affect the Development of In Vivo-Derived Pig Embryos but Substantially Improves the Quality of In Vitro-Produced Embryos
Cloned and transgenic pigs are relevant human disease models and serve as potential donors for regenerative medicine and xenotransplantation. These technologies demand oocytes and embryos of good quality. However, the current protocols for in vitro production (IVP) of pig embryos give reduced blastocyst efficiency and embryo quality compared to in vivo controls. This is likely due to culture conditions jeopardizing embryonic homeostasis including the effect of reactive oxygen species (ROS) influence. In this study, the antioxidant melatonin (1 nM) in the maturation medium, fertilization medium, or both media was ineffective in enhancing fertilization or embryonic development parameters of in vitro fertilized oocytes. Supplementation of melatonin in the fertilization medium also had no effect on sperm function. In contrast, the addition of melatonin to the embryo culture medium accelerated the timing of embryonic development and increased the percentages of cleaved embryos and presumed zygotes that developed to the blastocyst stage. Furthermore, it increased the number of inner mass cells and the inner mass cell/total cell number ratio per blastocyst while increasing intracellular glutathione and reducing ROS and DNA damage levels in embryos. Contrarily, the addition of melatonin to the embryo culture medium had no evident effect on in vivo-derived embryos, including the developmental capacity and the quality of in vivo-derived 4-cell embryos or the percentage of genome-edited in vivo-derived zygotes achieving the blastocyst stage. In conclusion, exogenous melatonin in the embryo culture medium enhances the development and quality of in vitro-derived embryos but not in in vivo-derived embryos. Exogenous melatonin is thus recommended during embryo culture of oocytes matured and fertilized in vitro for improving porcine IVP efficiency.Funding Agencies|MCIN/AEI; "ERDF A way of making Europe", Madrid, Spain [RTI2018-093525-B-I00]; European Union [891663]; Fundacion Seneca, Murcia, Spain [19892/GERM/15]; Swedish Research Council FORMAS, Stockholm, Sweden [2019-00288]</p
Achievements and future perspectives of embryo transfer technology in pigs
Commercial embryo transfer (ET) has unprecedented productive and economic implications for the pig sector. However, pig ET has been considered utopian for decades mainly because of the requirements of surgical techniques for embryo collection and embryo deposition into recipients, alongside challenges to preserve embryos. This situation has drastically changed in the last decade since the current technology allows non-surgical ET and short- and long-term embryo preservation. Here, we provide a brief review of the improvements in porcine ET achieved by our laboratory in the past 20 years. This review includes several aspects of non-surgical ET technology and different issues affecting ET programmes and embryo preservation systems. The future perspectives of ET technology are also considered. We will refer only to embryos produced in vivo since they are the only type of embryos with possible short-term use in pig production.Funding Agencies|MICINN-FEDER (Madrid, Spain)European Union (EU)Ministry of Science and Innovation, Spain (MICINN) [AGL2004-07546, AGL2009-12091]; MINECO-FEDER (Madrid, Spain) [AGL2012-38621, AGL2015-69735-R]; CDTI (Madrid, Spain) [IDI-20140140, IDI-20140142]; Fundacion Seneca (Murcia, Spain)Fundacion Seneca [GERM 04543/07, 19892/GERM/15]; Research Council FORMAS, Stockholm, Sweden [2017-00946]; Fundacion Seneca, (Murcia, Spain)Fundacion Seneca [20780/PD/18]; Junta de Comunidades de Castilla-La Mancha (Castilla-La Mancha, Spain, PRT programme) [SBPLY/17/180501/000500]; MINECO (Madrid, Spain) [BES-2016-077869]</p