1,910 research outputs found
Rheological aging and rejuvenation in solid friction contacts
We study the low-velocity (0.1--100 m.s) frictional properties of
interfaces between a rough glassy polymers and smooth silanized glass, a
configuration which gives direct access to the rheology of the adhesive joints
in which shear localizes. We show that these joints exhibit the full
phenomenology expected for confined quasi 2D soft glasses: they strengthen
logarithmically when aging at rest, and weaken (rejuvenate) when sliding.
Rejuvenation is found to saturate at large velocities. Moreover, aging at rest
is shown to be strongly accelerated when waiting under finite stress below the
static threshold
Perturbation of Tunneling Processes by Mechanical Degrees of Freedom in Mesoscopic Junctions
We investigate the perturbation in the tunneling current caused by
non-adiabatic mechanical motion in a mesoscopic tunnel junction. A theory
introduced by Caroli et al. \cite{bi1,bi2,bi3} is used to evaluate second order
self-energy corrections for this non-equilibrium situation lacking
translational invariance. Inelastic signatures of the mechanical degrees of
freedom are found in the current-voltage characteristics. These give
rise to sharp features in the derivative spectrum, .Comment: 22 pages LaTeX + 3 uuencoded PS picture
Interplay between shear loading and structural aging in a physical gel
We show that the aging of the mechanical relaxation of a gelatin gel exhibits
the same scaling phenomenology as polymer and colloidal glasses. Besides,
gelatin is known to exhibit logarithmic structural aging (stiffening). We find
that stress accelerates this process. However, this effect is definitely
irreducible to a mere age shift with respect to natural aging. We suggest that
it is interpretable in terms of elastically-aided elementary (coilhelix)
local events whose dynamics gradually slows down as aging increases geometric
frustration
Time-dependent quantum transport: an exact formulation based on TDDFT
An exact theoretical framework based on Time Dependent Density Functional
Theory (TDDFT) is proposed in order to deal with the time-dependent quantum
transport in fully interacting systems. We use a \textit{partition-free}
approach by Cini in which the whole system is in equilibrium before an external
electric field is switched on. Our theory includes the interactions between the
leads and between the leads and the device. It is well suited for calculating
measurable transient phenomena as well as a.c. and other time-dependent
responses. We show that the steady-state current results from a
\textit{dephasing mechanism} provided the leads are macroscopic and the device
is finite. In the d.c. case, we obtain a Landauer-like formula when the
effective potential of TDDFT is uniform deep inside the electrodes.Comment: final version, 7 pages, 1 figur
Elastic precession of electronic spin states in interacting integer quantum Hall edge channels
We consider the effect of Coulomb interactions in the propagation of
electrons, prepared in arbitrary spin states, on chiral edge channels in the
integer quantum Hall regime. Electrons are injected and detected at the same
energy at different locations of the Hall bar, which is modeled as a chiral
Tomonaga-Luttinger liquid. The current is computed perturbatively in the
tunneling amplitudes, within a non-crossing approximation using exact solutions
of the interacting Green's functions. In the case of different channel
velocities, the spin precession effect is evaluated, and the role of
interaction parameters and wavevectors is discussed.Comment: 5 pages, 3 figure
Dry Friction due to Adsorbed Molecules
Using an adiabatic approximation method, which searches for Tomlinson
model-like instabilities for a simple but still realistic model for two
crystalline surfaces in the extremely light contact limit, with mobile
molecules present at the interface, sliding relative to each other, we are able
to account for the virtually universal occurrence of "dry friction." The model
makes important predictions for the dependence of friction on the strength of
the interaction of each surface with the mobile molecules.Comment: four pages of latex, figure provide
Comment on ``Quasiparticle Spectra around a Single Vortex in a d-wave Superconductor''
In a recent Letter Morita, Kohmoto and Maki analyzed the structure of
quasiparticle states near a single vortex in a d-wave superconductor using an
approximate version of the Bogoliubov - de Gennes theory. Their principal
result is the existence of a bound state within the core region at finite
energy with full rotational symmetry, which they assert explains the recent
scanning tunneling microscopy results on YBCO single crystals. Here we argue
that the approximation used in this work is fundamentally inadequate for the
description of a d-wave vortex and that the obtained circular symmetry of the
local density of states is an unphysical artifact of this approximation.Comment: 1 page REVTeX, to appear in PR
On apparent breaking the second law of thermodynamics in quantum transport studies
We consider a model for stationary electronic transport through a
one-dimensional chain of two leads attached to a perturbed central region
(quantum dot) in the regime where the theory proposed recently by Capek for a
similar model of phonon transport predicts the striking phenomenon of a
permanent current between the leads. This result based on a rigorous but
asymptotic Davies theory is at variance with the zero current yielded by direct
transport calculations which can be carried out in the present model. We find
the permanent current to be within the error of the asymptotic expansion for
finite couplings, and identify cancelling terms of the same order.Comment: 5 pages, 3 figure
- …
