8 research outputs found
Production of dicarboxylic acid platform chemicals using yeasts: focus on succinic acid
The biotechnological production of biobased dicarboxylic acids has recently become a hot topic in industrial biotechnology, with many investments involved in the development, piloting, and validation at demonstration scale of diverse processes using renewable raw materials. This chapter will review the main markets and applications of commercially relevant dicarboxylic acids and will briefly present their current chemical and biotechnological production processes. The chapter will mainly focus on the particular case of succinic acid. The microbial platforms that have been proposed will be reviewed with emphasis on yeast strains. The basic requirements for setting up and scaling the bioprocess and the required purification strategy to obtain an economically feasible process yielding a product meeting the required specifications will be presented. Throughout the chapter, the specific challenges of using very low-cost raw materials such as agro-industrial residues will be highlighted.(undefined)info:eu-repo/semantics/publishedVersio
Waste-derived volatile fatty acids as carbon source for added-value fermentation approaches
The establishment of a sustainable circular bioeconomy requires the effective material recycling from biomass and biowaste beyond composting/fertilizer or anaerobic digestion/bioenergy. Recently, volatile fatty acids attracted much attention due to their potential application as carbon source for the microbial production of high added-value products. Their low-cost production from different types of wastes through dark fermentation is a key aspect, which will potentially lead to the sustainable production of fuels, materials or chemicals, while diminishing the waste volume. This article reviews the utilization of a volatile fatty acid platform for the microbial production of polyhydroxyalkanoates, single cell oil and omega-3 fatty acids, giving emphasis on the fermentation challenges for the efficient implementation of the bioprocess and how they were addressed. These challenges were addressed through a research project funded by the European Commission under the Horizon 2020 programme entitled 'VOLATILE-Biowaste derived volatile fatty acid platform for biopolymers, bioactive compounds and chemical building blocks'.This work was supported by the European project 'Volatile-Biowaste-derived volatile fatty acid platform for biopolymers, bioactive compounds and chemical building blocks' and has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 720777
Waste-derived volatile fatty acids as carbon source for added-value fermentation approaches
The establishment of a sustainable circular bioeconomy requires the effective material recycling from biomass and biowaste beyond composting/fertilizer or anaerobic digestion/bioenergy. Recently, volatile fatty acids attracted much attention due to their potential application as carbon source for the microbial production of high added-value products. Their low-cost production from different types of wastes through dark fermentation is a key aspect, which will potentially lead to the sustainable production of fuels, materials or chemicals, while diminishing the waste volume. This article reviews the utilization of a volatile fatty acid platform for the microbial production of polyhydroxyalkanoates, single cell oil and omega-3 fatty acids, giving emphasis on the fermentation challenges for the efficient implementation of the bioprocess and how they were addressed. These challenges were addressed through a research project funded by the European Commission under the Horizon 2020 programme entitled ‘VOLATILE—Biowaste derived volatile fatty acid platform for biopolymers, bioactive compounds and chemical building blocks’.This work was supported by the European project ‘VolatileBiowaste-derived volatile fatty acid platform for biopolymers, bioactive compounds and chemical building blocks’ and has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 720777
Improvement of cis,cis-Muconic Acid Production in Saccharomyces cerevisiae through Biosensor-Aided Genome Engineering
[Image: see text] Muconic acid is a potential platform chemical for the production of nylon, polyurethanes, and terephthalic acid. It is also an attractive functional copolymer in plastics due to its two double bonds. At this time, no economically viable process for the production of muconic acid exists. To harness novel genetic targets for improved production of cis,cis-muconic acid (CCM) in the yeast Saccharomyces cerevisiae, we employed a CCM-biosensor coupled to GFP expression with a broad dynamic response to screen UV-mutagenesis libraries of CCM-producing yeast. Via fluorescence activated cell sorting we identified a clone Mut131 with a 49.7% higher CCM titer and 164% higher titer of biosynthetic intermediate–protocatechuic acid (PCA). Genome resequencing of the Mut131 and reverse engineering identified seven causal missense mutations of the native genes (PWP2, EST2, ATG1, DIT1, CDC15, CTS2, and MNE1) and a duplication of two CCM biosynthetic genes, encoding dehydroshikimate dehydratase and catechol 1,2-dioxygenase, which were not recognized as flux controlling before. The Mut131 strain was further rationally engineered by overexpression of the genes encoding for PCA decarboxylase and AROM protein without shikimate dehydrogenase domain (Aro1p(ΔE)), and by restoring URA3 prototrophy. The resulting engineered strain produced 20.8 g/L CCM in controlled fed-batch fermentation, with a yield of 66.2 mg/g glucose and a productivity of 139 mg/L/h, representing the highest reported performance metrics in a yeast for de novo CCM production to date and the highest production of an aromatic compound in yeast. The study illustrates the benefit of biosensor-based selection and brings closer the prospect of biobased muconic acid
Bioremediation of Petroleum Hydrocarbons in Seawater: Prospects of Using Lyophilized Native Hydrocarbon-Degrading Bacteria
This work aimed to develop a bioremediation product of lyophilized native bacteria to respond to marine oil spills. Three oil-degrading bacterial strains (two strains of Rhodococcus erythropolis and one Pseudomonas sp.), isolated from the NW Portuguese coast, were selected for lyophilization after biomass growth optimization (tested with alternative carbon sources). Results indicated that the bacterial strains remained viable after the lyophilization process, without losing their biodegradation potential. The biomass/petroleum ratio was optimized, and the bioremediation efficiency of the lyophilized bacterial consortium was tested in microcosms with natural seawater and petroleum. An acceleration of the natural oil degradation process was observed, with an increased abundance of oil-degraders after 24 h, an emulsion of the oil/water layer after 7 days, and an increased removal of total petroleum hydrocarbons (47%) after 15 days. This study provides an insight into the formulation and optimization of lyophilized bacterial agents for application in autochthonous oil bioremediation
Bioremediation of Petroleum Hydrocarbons in Seawater: Prospects of Using Lyophilized Native Hydrocarbon-Degrading Bacteria
This work aimed to develop a bioremediation product of lyophilized native bacteria to respond to marine oil spills. Three oil-degrading bacterial strains (two strains of Rhodococcus erythropolis and one Pseudomonas sp.), isolated from the NW Portuguese coast, were selected for lyophilization after biomass growth optimization (tested with alternative carbon sources). Results indicated that the bacterial strains remained viable after the lyophilization process, without losing their biodegradation potential. The biomass/petroleum ratio was optimized, and the bioremediation efficiency of the lyophilized bacterial consortium was tested in microcosms with natural seawater and petroleum. An acceleration of the natural oil degradation process was observed, with an increased abundance of oil-degraders after 24 h, an emulsion of the oil/water layer after 7 days, and an increased removal of total petroleum hydrocarbons (47%) after 15 days. This study provides an insight into the formulation and optimization of lyophilized bacterial agents for application in autochthonous oil bioremediation
An integrated yeast-based process for cis,cis-muconic acid production
Cis,cis‐muconic acid (CCM) is a promising polymer building block. CCM can be made by whole‐cell bioconversion of lignin hydrolysates or de novo biosynthesis from sugar feedstocks using engineered microorganisms. At present, however, there is no established process for large‐scale CCM production. In this study, we developed an integrated process for manufacturing CCM from glucose by yeast fermentation. We systematically engineered the CCM‐producing Saccharomyces cerevisiae strain by rewiring the shikimate pathway flux and enhancing phosphoenolpyruvate supply. The engineered strain ST10209 accumulated less biomass but produced 1.4 g/L CCM (70 mg CCM per g glucose) in microplate assay, 71% more than the previously engineered strain ST8943. The strain ST10209 produced 22.5 g/L CCM in a 2 L fermenter with a productivity of 0.19 g/L/h, compared to 0.14 g/L/h achieved by ST8943 in our previous report under the same fermentation conditions. The fermentation process was demonstrated at pilot scale in 10 and 50 L steel tanks. In 10 L fermenter, ST10209 produced 20.8 g/L CCM with a CCM yield of 0.1 g/g glucose and a productivity of 0.21 g/L/h, representing the highest to‐date CCM yield and productivity. We developed a CCM recovery and purification process by treating the fermentation broth with activated carbon at low pH and low temperature, achieving an overall CCM recovery yield of 66.3% and 95.4% purity. In summary, we report an integrated CCM production process employing engineered S. cerevisiae yeast
Towards a Circular Bioeconomy. VOLATILE FATTY ACID PLATFORM FOR BIOWASTE RECYCLING
Resources in general are not infinitely available, and also renewable resources if consumed outside their normal replacement cycles become scarce. Therefore, the establishment of a circular bioeconomy must respect natural systems and replacement cycles of organic carbon thereby reducing environmental pressure of human consumption. Upcycling of side and biowaste streams towards added value compounds represents hereby a critical aspect reducing land system change and fertilizer use for biomass supply for the bioeconomy. The development of a Volatile Fatty Acids Platform (VFAP) represents an important cornerstone for the upcycling of heterogenous municipal biowaste streams.This e-book was prepared in the context of the EU funded project VOLATILE in accordance with the grant agreement No 720777 (European Union’s Horizon 2020 research and innovation programme)