27 research outputs found
Recommended from our members
Linkage and association of haplotypes at the APOA1/C3/A4/A5 genecluster to familial combined hyperlipidemia
Combined hyperlipidemia (CHL) is a common disorder of lipidmetabolism that leads to an increased risk of cardiovascular disease. Thelipid profile of CHL is characterised by high levels of atherogeniclipoproteins and low levels of high-density-lipoprotein-cholesterol.Apolipoprotein (APO) A5 is a newly discovered gene involved in lipidmetabolism located within 30kbp of the APOA1/C3/A4 gene cluster. Previousstudies have indicated that sequence variants in this cluster areassociated with increased plasma lipid levels. To establish whethervariation at the APOA5 gene contributes to the transmission of CHL, weperformed linkage and linkage disequilibrium (LD) tests on a large cohortof families (n=128) with familial CHL (FCHL). The linkage data producedevidence for linkage of the APOA1/C3/A4/A5 genomic interval to FCHL (NPL= 1.7, P = 0.042). The LD studies substantiated these data. Twoindependent rare alleles, APOA5c.56G and APOC3c.386G of this gene clusterwere over-transmitted in FCHL (P = 0.004 and 0.007, respectively), andthis was associated with a reduced transmission of the most commonAPOA1/C3/A4/A5 haplotype (frequency 0.4425) to affected subjects (P =0.013). The APOA5c.56G allele was associated with increased plasmatriglyceride levels in FCHL probands, whereas the second, andindependent, APOC3c.386G allele was associated with increased plasmatriglyceride levels in FCHL pedigree founders. Thus, this allele (or anallele in LD) may mark a quantitative trait associated with FCHL, as wellas representing a disease susceptibility locus for the condition. Thisstudy establishes that sequence variation in the APOA1/C3/A4/A5 genecluster contributes to the transmission of FCHL in a substantialproportion of affected families, and that these sequence variants mayalso contribute to the lipid abnormalities of the metabolic syndrome,which is present in up to 40 percent of persons with cardiovasculardisease
Myeloid Tribbles 1 induces early atherosclerosis via enhanced foam cell expansion.
Macrophages drive atherosclerotic plaque progression and rupture; hence, attenuating their atherosclerosis-inducing properties holds promise for reducing coronary heart disease (CHD). Recent studies in mouse models have demonstrated that Tribbles 1 (Trib1) regulates macrophage phenotype and shows that Trib1 deficiency increases plasma cholesterol and triglyceride levels, suggesting that reduced TRIB1 expression mediates the strong genetic association between the TRIB1 locus and increased CHD risk in man. However, we report here that myeloid-specific Trib1 (mTrib1) deficiency reduces early atheroma formation and that mTrib1 transgene expression increases atherogenesis. Mechanistically, mTrib1 increased macrophage lipid accumulation and the expression of a critical receptor (OLR1), promoting oxidized low-density lipoprotein uptake and the formation of lipid-laden foam cells. As TRIB1 and OLR1 RNA levels were also strongly correlated in human macrophages, we suggest that a conserved, TRIB1-mediated mechanism drives foam cell formation in atherosclerotic plaque and that inhibiting mTRIB1 could be used therapeutically to reduce CHD
HEART UK statement on the management of homozygous familial hypercholesterolaemia in the United Kingdom
This consensus statement addresses the current three main modalities of treatment of homozygous familial hypercholesterolaemia (HoFH): pharmacotherapy, lipoprotein (Lp) apheresis and liver transplantation. HoFH may cause very premature atheromatous arterial disease and death, despite treatment with Lp apheresis combined with statin, ezetimibe and bile acid sequestrants. Two new classes of drug, effective in lowering cholesterol in HoFH, are now licensed in the United Kingdom. Lomitapide is restricted to use in HoFH but, may cause fatty liver and is very expensive. PCSK9 inhibitors are quite effective in receptor defective HoFH, are safe and are less expensive. Lower treatment targets for lipid lowering in HoFH, in line with those for the general FH population, have been proposed to improve cardiovascular outcomes. HEART UK presents a strategy combining Lp apheresis with pharmacological treatment to achieve these targets in the United Kingdom (UK). Improved provision of Lp apheresis by use of existing infrastructure for extracorporeal treatments such as renal dialysis is promoted. The clinical management of adults and children with HoFH including advice on pregnancy and contraception are addressed. A premise of the HEART UK strategy is that the risk of early use of drug treatments beyond their licensed age restriction may be balanced against risks of liver transplantation or ineffective treatment in severely affected patients. This may be of interest beyond the UK
Evidence of a Polygenic Origin of Extreme High-Density Lipoprotein Cholesterol Levels-Brief Report
<p>Objective-There are several known monogenic causes of high and low high-density lipoprotein cholesterol (HDL-C) levels, but traditional sequencing studies have had limited success in identifying mutations in the majority of individuals with extreme HDL-C levels. The aim of this study was to assess the power of a targeted high-throughput sequencing strategy to elucidate the genetic basis of extreme HDL-C phenotypes.</p><p>Approach and Results-We sequenced 195 genes with either established or implicated roles in lipid and lipoprotein metabolism plus 78 lipid-unrelated genes in patients with HDL-C 99th (n=40) percentile values, and the results were compared with those of 498 individuals representative of the Dutch general population and 95 subjects with normal HDL-C (between 40th and 60th percentile values). The extreme HDL cohort carried more rare nonsynonymous variants in the lipid geneset than both the general population (odds ratio, 1.39; P=0.019) and normal HDL-C (odds ratio, 1.43; P=0.040) cohorts. The prevalence of such variants in the lipid-related and lipid-unrelated genesets was similar in the control groups, indicative of equal mutation rates. In the extreme HDL cohort, however, there was enrichment of rare nonsynonymous variants in the lipid versus the control geneset (odds ratio, 2.23; P= 2 and >= 5 rare variants.</p><p>Conclusions-This study suggests that most extreme HDL-C phenotypes have a polygenic origin.</p>
Family history in first degree relatives of patients with premature cardiovascular disease
BACKGROUND: Family history (FH) of cardiovascular disease (CVD) in first degree relatives (FDR) is a major risk factor, especially for premature events. Data are sparse on FH of different manifestations of CVD among FDRs of patients with premature myocardial infarction (MI), chronic stable angina (CSA) or peripheral vascular disease (PVD).METHODS: We obtained FHs from first degree relatives (parents or siblings) of 230 consecutive patients with premature (men < 60 and women < 65 years) CVD, including 79 wth MI, 39 CSA, 51 PVD and 61 blood donors. Among 1225 parents or siblings, 421 had MI, 222 CSA, 261PVD and 321 were among blood donors.RESULTS: FH of MI were 5.6% (18/321) among blood donors, 14.0% (59/421) among patients with premature MI, 14.4% (32/222) CSA, and 8.0% (21/261) PVD. (all p < 0.05). For FH of CSA the corresponding frequencies were 3.7% 5.2%, 11.3%, and 6.9%. (all p < 0.05). For PVD, the corresponding frequencies were 2.1%, 3.4%, 0.9% and 0.7%, respectively. (p = ns).CONCLUSIONS: These data are compatible with the hypothesis that FH of MI, CSA and PVD are significantly different for patients with premature MI or CSA but not PVD