92 research outputs found

    AKT1 (E17K) mutation profiling in breast cancer: prevalence, concurrent oncogenic alterations, and blood-based detection.

    Get PDF
    BACKGROUND: The single hotspot mutation AKT1 [G49A:E17K] has been described in several cancers, with the highest incidence observed in breast cancer. However, its precise role in disease etiology remains unknown. METHODS: We analyzed more than 600 breast cancer tumor samples and circulating tumor DNA for AKT1 (E17K) and alterations in other cancer-associated genes using Beads, Emulsions, Amplification, and Magnetics digital polymerase chain reaction technology and targeted exome sequencing. RESULTS: Overall AKT1 (E17K) mutation prevalence was 6.3 % and not correlated with age or menopausal stage. AKT1 (E17K) mutation frequency tended to be lower in patients with grade 3 disease (1.9 %) compared with those with grade 1 (11.1 %) or grade 2 (6 %) disease. In two cohorts of patients with advanced metastatic disease, 98.0 % (n = 50) and 97.1 % (n = 35) concordance was obtained between tissue and blood samples for the AKT1 (E17K) mutation, and mutation capture rates of 66.7 % (2/3) and 85.7 % (6/7) in blood versus tissue samples were observed. Although AKT1-mutant tumor specimens were often found to harbor concurrent alterations in other driver genes, a subset of specimens harboring AKT1 (E17K) as the only known driver alteration was also identified. Initial follow-up survival data suggest that AKT1 (E17K) could be associated with increased mortality. These findings warrant additional long-term follow-up. CONCLUSIONS: The data suggest that AKT1 (E17K) is the most likely disease driver in certain breast cancer patients. Blood-based mutation detection is achievable in advanced-stage disease. These findings underpin the need for a further enhanced-precision medicine paradigm in the treatment of breast cancer

    2007-2008 Mostly Music: Mendelssohn

    Get PDF
    Conceived and Hosted by Marshall Turkin Staging by Jan McArt Date & Time: Saturday, April 5, 2008 at 7:30 pm and Sunday, April 6, 2008 at 4:00 pmhttps://spiral.lynn.edu/conservatory_mostlymusic/1002/thumbnail.jp

    2007-2008 Mostly Music: Mendelssohn

    Get PDF
    Conceived and Hosted by Marshall Turkin Staging by Jan McArt Date & Time: Saturday, April 5, 2008 at 7:30 pm and Sunday, April 6, 2008 at 4:00 pmhttps://spiral.lynn.edu/conservatory_mostlymusic/1002/thumbnail.jp

    Genetic Variants of VEGFA and FLT4 Are Determinants of Survival in Renal Cell Carcinoma Patients Treated with Sorafenib

    Get PDF
    Molecular markers of sorafenib efficacy in patients with metastatic renal cell carcinoma (mRCC) are not available. The purpose of this study was to discover genetic markers of survival in patients with mRCC treated with sorafenib. Germline variants from 56 genes were genotyped in 295 patients with mRCC. Variant-overall survival (OS) associations were tested in multivariate regression models. Mechanistic studies were conducted to validate clinical associations. VEGFA rs1885657, ITGAV rs3816375, and WWOX rs8047917 (sorafenib arm), and FLT4 rs307826 and VEGFA rs3024987 (sorafenib and placebo arms combined) were associated with shorter OS. FLT4 rs307826 increased VEGFR-3 phosphorylation, membrane trafficking, and receptor activation. VEGFA rs1885657 and rs58159269 increased transcriptional activity of the constructs containing these variants in endothelial and RCC cell lines, and VEGFA rs58159269 increased endothelial cell proliferation and tube formation. FLT4 rs307826 and VEGFA rs58159269 led to reduced sorafenib cytotoxicity. Genetic variation in VEGFA and FLT4 could affect survival in sorafenib-treated patients with mRCC. These markers should be examined in additional malignancies treated with sorafenib and in other angiogenesis inhibitors used in mRCC. Significance: Clinical and mechanistic data identify germline genetic variants in VEGFA and FLT4 as markers of survival in patients with metastatic renal cell carcinoma.Peer reviewe

    Bioinformatic and statistical analysis of the optic nerve head in a primate model of ocular hypertension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nonhuman primate model of glaucomatous optic neuropathy most faithfully reproduces the human disease. We used high-density oligonucleotide arrays to investigate whole genome transcriptional changes occurring at the optic nerve head during primate experimental glaucoma.</p> <p>Results</p> <p>Laser scarification of the trabecular meshwork of cynomolgus macaques produced elevated intraocular pressure that was monitored over time and led to varying degrees of damage in different samples. The macaques were examined clinically before enucleation and the myelinated optic nerves were processed post-mortem to determine the degree of neuronal loss. Global gene expression was examined in dissected optic nerve heads with Affymetrix GeneChip microarrays. We validated a subset of differentially expressed genes using qRT-PCR, immunohistochemistry, and immuno-enriched astrocytes from healthy and glaucomatous human donors. These genes have previously defined roles in axonal outgrowth, immune response, cell motility, neuroprotection, and extracellular matrix remodeling.</p> <p>Conclusion</p> <p>Our findings show that glaucoma is associated with increased expression of genes that mediate axonal outgrowth, immune response, cell motility, neuroprotection, and ECM remodeling. These studies also reveal that, as glaucoma progresses, retinal ganglion cell axons may make a regenerative attempt to restore lost nerve cell contact.</p

    Progressive skin fibrosis is associated with a decline in lung function and worse survival in patients with diffuse cutaneous systemic sclerosis in the European Scleroderma Trials and Research (EUSTAR) cohort.

    Get PDF
    Objectives To determine whether progressive skin fibrosis is associated with visceral organ progression and mortality during follow-up in patients with diffuse cutaneous systemic sclerosis (dcSSc). Methods We evaluated patients from the European Scleroderma Trials and Research database with dcSSc, baseline modified Rodnan skin score (mRSS) ≥7, valid mRSS at 12±3 months after baseline and ≥1 annual follow-up visit. Progressive skin fibrosis was defined as an increase in mRSS &gt;5 and ≥25% from baseline to 12±3 months. Outcomes were pulmonary, cardiovascular and renal progression, and all-cause death. Associations between skin progression and outcomes were evaluated by Kaplan-Meier survival analysis and multivariable Cox regression. Results Of 1021 included patients, 78 (7.6%) had progressive skin fibrosis (skin progressors). Median follow-up was 3.4 years. Survival analyses indicated that skin progressors had a significantly higher probability of FVC decline ≥10% (53.6% vs 34.4%; p&lt;0.001) and all-cause death (15.4% vs 7.3%; p=0.003) than non-progressors. These significant associations were also found in subgroup analyses of patients with either low baseline mRSS (≤22/51) or short disease duration (≤15 months). In multivariable analyses, skin progression within 1 year was independently associated with FVC decline ≥10% (HR 1.79, 95% CI 1.20 to 2.65) and all-cause death (HR 2.58, 95% CI 1.31 to 5.09). Conclusions Progressive skin fibrosis within 1 year is associated with decline in lung function and worse survival in dcSSc during follow-up. These results confirm mRSS as a surrogate marker in dcSSc, which will be helpful for cohort enrichment in future trials and risk stratification in clinical practice
    • …
    corecore