22 research outputs found
MRP3: a molecular target for human glioblastoma multiforme immunotherapy.
<p>Abstract</p> <p>Background</p> <p>Glioblastoma multiforme (GBM) is refractory to conventional therapies. To overcome the problem of heterogeneity, more brain tumor markers are required for prognosis and targeted therapy. We have identified and validated a promising molecular therapeutic target that is expressed by GBM: human multidrug-resistance protein 3 (MRP3).</p> <p>Methods</p> <p>We investigated MRP3 by genetic and immunohistochemical (IHC) analysis of human gliomas to determine the incidence, distribution, and localization of MRP3 antigens in GBM and their potential correlation with survival. To determine MRP3 mRNA transcript and protein expression levels, we performed quantitative RT-PCR, raising MRP3-specific antibodies, and IHC analysis with biopsies of newly diagnosed GBM patients. We used univariate and multivariate analyses to assess the correlation of RNA expression and IHC of MRP3 with patient survival, with and without adjustment for age, extent of resection, and KPS.</p> <p>Results</p> <p>Real-time PCR results from 67 GBM biopsies indicated that 59/67 (88%) samples highly expressed <it>MRP3 </it>mRNA transcripts, in contrast with minimal expression in normal brain samples. Rabbit polyvalent and murine monoclonal antibodies generated against an extracellular span of MRP3 protein demonstrated reactivity with defined <it>MRP3</it>-expressing cell lines and GBM patient biopsies by Western blotting and FACS analyses, the latter establishing cell surface MRP3 protein expression. IHC evaluation of 46 GBM biopsy samples with anti-MRP3 IgG revealed MRP3 in a primarily membranous and cytoplasmic pattern in 42 (91%) of the 46 samples. Relative RNA expression was a strong predictor of survival for newly diagnosed GBM patients. Hazard of death for GBM patients with high levels of <it>MRP3 </it>RNA expression was 2.71 (95% CI: 1.54-4.80) times that of patients with low/moderate levels (p = 0.002).</p> <p>Conclusions</p> <p>Human GBMs overexpress MRP3 at both mRNA and protein levels, and elevated MRP3 mRNA levels in GBM biopsy samples correlated with a higher risk of death. These data suggest that the tumor-associated antigen MRP3 has potential use for prognosis and as a target for malignant glioma immunotherapy.</p
Poliovirus receptor CD155–targeted oncolysis of glioma1
Cell adhesion molecules of the immunoglobulin superfamily are aberrantly expressed in malignant glioma. Amongst these, the human poliovirus receptor CD155 provides a molecular target for therapeutic intervention with oncolytic poliovirus recombinants. Poliovirus has been genetically modified through insertion of regulatory sequences derived from human rhinovirus type 2 to selectively replicate within and destroy cancerous cells. Efficacious oncolysis mediated by poliovirus derivatives depends on the presence of CD155 in targeted tumors. To prepare oncolytic polioviruses for clinical application, we have developed a series of assays in high-grade malignant glioma (HGL) to characterize CD155 expression levels and susceptibility to oncolytic poliovirus recombinants. Analysis of 6 HGL cases indicates that CD155 is expressed in these tumors and in primary cell lines derived from these tumors. Upregulation of the molecular target CD155 rendered explant cultures of all studied tumors highly susceptible to a prototype oncolytic poliovirus recombinant. Our observations support the clinical application of such agents against HGL
Poliovirus receptor CD155–targeted oncolysis of glioma1
Cell adhesion molecules of the immunoglobulin superfamily are aberrantly expressed in malignant glioma. Amongst these, the human poliovirus receptor CD155 provides a molecular target for therapeutic intervention with oncolytic poliovirus recombinants. Poliovirus has been genetically modified through insertion of regulatory sequences derived from human rhinovirus type 2 to selectively replicate within and destroy cancerous cells. Efficacious oncolysis mediated by poliovirus derivatives depends on the presence of CD155 in targeted tumors. To prepare oncolytic polioviruses for clinical application, we have developed a series of assays in high-grade malignant glioma (HGL) to characterize CD155 expression levels and susceptibility to oncolytic poliovirus recombinants. Analysis of 6 HGL cases indicates that CD155 is expressed in these tumors and in primary cell lines derived from these tumors. Upregulation of the molecular target CD155 rendered explant cultures of all studied tumors highly susceptible to a prototype oncolytic poliovirus recombinant. Our observations support the clinical application of such agents against HGL