114 research outputs found
Diploma Privilege and the Constitution
The COVID-19 pandemic and resulting shutdowns are affecting every aspect of society. The legal profession and the justice system have been profoundly disrupted at precisely the time when there is an unprecedented need for legal services to deal with a host of legal issues generated by the pandemic, including disaster relief, health law, insurance, labor law, criminal justice, domestic violence, and civil rights. The need for lawyers to address these issues is great but the prospect of licensing new lawyers is challenging due to the serious health consequences of administering the bar examination during the pandemic.
State Supreme Courts are actively considering alternative paths to licensure. One such alternative is the diploma privilege, a path to licensure currently used only in Wisconsin. Wisconsin\u27s privilege, limited to graduates of its two in-state schools, has triggered constitutional challenges never fully resolved by the lower courts. As states consider emergency diploma privileges to address the pandemic, they will face these unresolved constitutional issues.
This Article explores those constitutional challenges and concludes that a diploma privilege limited to graduates of in-state schools raises serious Dormant Commerce Clause questions that will require the state to tie the privilege to the particular competencies in-state students develop and avenues they have to demonstrate those competencies to the state\u27s practicing bar over three years. Meeting that standard will be particularly difficult if a state adopts an in-state privilege on an emergency basis. States should consider other options, including privileges that do not prefer in-state schools. The analysis is important both for states considering emergency measures and for those that might restructure their licensing after the pandemic
The Bar Exam and the COVID-19 Pandemic: The Need for Immediate Action
The novel coronavirus COVID-19 has profoundly disrupted life in the United States. Among other challenges, jurisdictions are unlikely to be able to administer the July 2020 bar exam in the usual manner. It is essential, however, to continue licensing new lawyers. Those lawyers are necessary to meet current needs in the legal system. Equally important, the demand for legal services will skyrocket during and after this pandemic. We cannot close doors to the profession at a time when client demand will reach an all-time high.In this brief policy paper, we outline six licensing options for jurisdictions to consider for the Class of 2020. Circumstances will vary from jurisdiction to jurisdiction, but we hope that these options will help courts and regulators make this complex decision. These are unprecedented times: We must work together to ensure we do not leave the talented members of Class of 2020 on the sidelines when we need every qualified professional on the field to keep our justice system moving
Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis
Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis
Wnt and Hedgehog Are Critical Mediators of Cigarette Smoke-Induced Lung Cancer
BACKGROUND: Lung cancer is the leading cause of cancer death in the world, and greater than 90% of lung cancers are cigarette smoke-related. Current treatment options are inadequate, because the molecular basis of cigarette-induced lung cancer is poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that human primary or immortalized bronchial epithelial cells exposed to cigarette smoke for eight days in culture rapidly proliferate, show anchorage-independent growth, and form tumors in nude mice. Using this model of the early stages of smoke-induced tumorigenesis, we examined the molecular changes leading to lung cancer. We observed that the embryonic signaling pathways mediated by Hedgehog and Wnt are activated by smoke. Pharmacological inhibition of these pathways blocked the transformed phenotype. CONCLUSIONS/SIGNIFICANCE: These experiments provide a model in which the early stages of smoke-induced tumorigenesis can be elicited, and should permit us to identify molecular changes driving this process. Results obtained so far indicate that smoke-induced lung tumors are driven by activation of two embryonic regulatory pathways, Hedgehog (Hh) and Wnt. Based on the current and emerging availability of drugs to inhibit Hh and Wnt signaling, it is possible that an understanding of the role of Hh and Wnt in lung cancer pathogenesis will lead to the development of new therapies
Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms
KT acknowledges receipt of a mandate of Industrial Research Fund (IOFm/05/022). JB acknowledges funding from the European Research Council Advanced Award 3400867/RAPLODAPT and the Israel Science Foundation grant # 314/13 (www.isf.il). NG acknowledges the Wellcome Trust and MRC for funding. CD acknowledges funding from the Agence Nationale de Recherche (ANR-10-LABX-62-IBEID). CJN acknowledges funding from the National Institutes of Health R35GM124594 and R21AI125801. AW is supported by the Wellcome Trust Strategic Award (grant 097377), the MRC Centre for Medical Mycology (grant MR/N006364/1) at the University of Aberdeen MaCA: outside this study MaCA has received personal speakerās honoraria the past five years from Astellas, Basilea, Gilead, MSD, Pfizer, T2Candida, and Novartis. She has received research grants and contract work paid to the Statens Serum Institute from Astellas, Basilea, Gilead, MSD, NovaBiotics, Pfizer, T2Biosystems, F2G, Cidara, and Amplyx. CAM acknowledges the Wellcome Trust and the MRC MR/N006364/1. PVD, TC and KT acknowledge the FWO research community: Biology and ecology of bacterial and fungal biofilms in humans (FWO WO.009.16N). AAB acknowledges the Deutsche Forschungsgemeinschaft ā CRC FungiNet.Peer reviewedPublisher PD
Integrating Ion Mobility Mass Spectrometry with Molecular Modelling to Determine the Architecture of Multiprotein Complexes
Current challenges in the field of structural genomics point to the need for new tools and technologies for obtaining structures of macromolecular protein complexes. Here, we present an integrative computational method that uses molecular modelling, ion mobility-mass spectrometry (IM-MS) and incomplete atomic structures, usually from X-ray crystallography, to generate models of the subunit architecture of protein complexes. We begin by analyzing protein complexes using IM-MS, and by taking measurements of both intact complexes and sub-complexes that are generated in solution. We then examine available high resolution structural data and use a suite of computational methods to account for missing residues at the subunit and/or domain level. High-order complexes and sub-complexes are then constructed that conform to distance and connectivity constraints imposed by IM-MS data. We illustrate our method by applying it to multimeric protein complexes within the Escherichia coli replisome: the sliding clamp, (Ī²2), the Ī³ complex (Ī³3Ī“Ī“ā²), the DnaB helicase (DnaB6) and the Single-Stranded Binding Protein (SSB4)
Modeling the Spatial Distribution and Fruiting Pattern of a Key Tree Species in a Neotropical Forest: Methodology and Potential Applications
Damien Caillaud is with UT Austin and Max Planck Institute for Evolutionary Anthropology; Margaret C. Crofoot is with the Smithsonian Tropical Research Institute, Max Planck Institute for Ornithology, and Princeton University; Samuel V. Scarpino is with UT Austin; Patrick A. Jansen is with the Smithsonian Tropical Research Institute, Wageningen University, and University of Groningen; Carol X. Garzon-Lopez is with University of Groningen; Annemarie J. S. Winkelhagen is with Wageningen University; Stephanie A. Bohlman is with Princeton University; Peter D. Walsh is with VaccinApe.Background -- The movement patterns of wild animals depend crucially on the spatial and temporal availability of resources in their habitat. To date, most attempts to model this relationship were forced to rely on simplified assumptions about the spatiotemporal distribution of food resources. Here we demonstrate how advances in statistics permit the combination of sparse ground sampling with remote sensing imagery to generate biological relevant, spatially and temporally explicit distributions of food resources. We illustrate our procedure by creating a detailed simulation model of fruit production patterns for Dipteryx oleifera, a keystone tree species, on Barro Colorado Island (BCI), Panama. Methodology and Principal Findings -- Aerial photographs providing GPS positions for large, canopy trees, the complete census of a 50-ha and 25-ha area, diameter at breast height data from haphazardly sampled trees and long-term phenology data from six trees were used to fit 1) a point process model of tree spatial distribution and 2) a generalized linear mixed-effect model of temporal variation of fruit production. The fitted parameters from these models are then used to create a stochastic simulation model which incorporates spatio-temporal variations of D. oleifera fruit availability on BCI. Conclusions and Significance -- We present a framework that can provide a statistical characterization of the habitat that can be included in agent-based models of animal movements. When environmental heterogeneity cannot be exhaustively mapped, this approach can be a powerful alternative. The results of our model on the spatio-temporal variation in D. oleifera fruit availability will be used to understand behavioral and movement patterns of several species on BCI.The National Center For Ecological Analysis is supported by NSF Grant DEB-0553768, the University of California Santa Barbara and the State of California. The Forest Dynamics Plots were funded by NSF Grants to Stephen Hubbell DEB-0640386, DEB-0425651, DEB-0346488, DEB-0129874, DEB-00753102, DEB-9909347, DEB-9615226, DEB-9615226, DEB-9405933, DEB-9221033, DEB-9100058, DEB-8906869, DEB-8605042, DEB-8206992, DEB-7922197, and by the Center for Tropical Forest Science, the Smithsonian Tropical Forest Research Institute, The John D. and Catherine T. MacArthur Foundation, the Mellon Foundation and the Celera Foundation. DC is supported by NSF grant DEB-0749097 to L.A. Meyers. SS is supported by an NSF Graduate Research Fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Biological Sciences, School o
A Human-Curated Annotation of the Candida albicans Genome
Recent sequencing and assembly of the genome for the fungal pathogen Candida albicans used simple automated procedures for the identification of putative genes. We have reviewed the entire assembly, both by hand and with additional bioinformatic resources, to accurately map and describe 6,354 genes and to identify 246 genes whose original database entries contained sequencing errors (or possibly mutations) that affect their reading frame. Comparison with other fungal genomes permitted the identification of numerous fungus-specific genes that might be targeted for antifungal therapy. We also observed that, compared to other fungi, the protein-coding sequences in the C. albicans genome are especially rich in short sequence repeats. Finally, our improved annotation permitted a detailed analysis of several multigene families, and comparative genomic studies showed that C. albicans has a far greater catabolic range, encoding respiratory Complex 1, several novel oxidoreductases and ketone body degrading enzymes, malonyl-CoA and enoyl-CoA carriers, several novel amino acid degrading enzymes, a variety of secreted catabolic lipases and proteases, and numerous transporters to assimilate the resulting nutrients. The results of these efforts will ensure that the Candida research community has uniform and comprehensive genomic information for medical research as well as for future diagnostic and therapeutic applications
Evolution of pathogenicity and sexual reproduction in eight Candida genomes
Candida species are the most common cause of opportunistic fungal infection worldwide. Here we report the genome sequences of six Candida species and compare these and related pathogens and non-pathogens. There are significant expansions of cell wall, secreted and transporter gene families in pathogenic species, suggesting adaptations associated with virulence. Large genomic tracts are homozygous in three diploid species, possibly resulting from recent recombination events. Surprisingly, key components of the mating and meiosis pathways are missing from several species. These include major differences at the mating-type loci (MTL); Lodderomyces elongisporus lacks MTL, and components of the a1/2 cell identity determinant were lost in other species, raising questions about how mating and cell types are controlled. Analysis of the CUG leucine-to-serine genetic-code change reveals that 99% of ancestral CUG codons were erased and new ones arose elsewhere. Lastly, we revise the Candida albicans gene catalogue, identifying many new genes.publishe
- ā¦