1,067 research outputs found

    Parity independence of the zero-bias conductance peak in a nanowire based topological superconductor-quantum dot hybrid device

    Full text link
    We explore the signatures of Majorana fermions in a nanowire based topological superconductor-quantum dot-topological superconductor hybrid device by charge transport measurements. The device is made from an epitaxially grown InSb nanowire with two superconductor Nb contacts on a Si/SiO2_2 substrate. At low temperatures, a quantum dot is formed in the segment of the InSb nanowire between the two Nb contacts and the two Nb contacted segments of the InSb nanowire show superconductivity due to the proximity effect. At zero magnetic field, well defined Coulomb diamonds and the Kondo effect are observed in the charge stability diagram measurements in the Coulomb blockade regime of the quantum dot. Under the application of a finite, sufficiently strong magnetic field, a zero-bias conductance peak structure is observed in the same Coulomb blockade regime. It is found that the zero-bias conductance peak is present in many consecutive Coulomb diamonds, irrespective of the even-odd parity of the quasi-particle occupation number in the quantum dot. In addition, we find that the zero-bias conductance peak is in most cases accompanied by two differential conductance peaks, forming a triple-peak structure, and the separation between the two side peaks in bias voltage shows oscillations closely correlated to the background Coulomb conductance oscillations of the device. The observed zero-bias conductance peak and the associated triple-peak structure are in line with the signatures of Majorana fermion physics in a nanowire based topological superconductor-quantum dot-topological superconductor system, in which the two Majorana bound states adjacent to the quantum dot are hybridized into a pair of quasi-particle states with finite energies and the other two Majorana bound states remain as the zero-energy modes located at the two ends of the entire InSb nanowire.Comment: 6 pages, 4 figure

    Engineering the side facets of vertical [100] oriented InP nanowires for novel radial heterostructures

    Get PDF
    In addition to being grown on industry-standard orientation, vertical [100] oriented nanowires present novel families of facets and related cross-sectional shapes. These nanowires are engineered to achieve a number of facet combinations and cross-sectional shapes, by varying their growth parameters within ranges that facilitate vertical growth. In situ post-growth annealing technique is used to realise other combinations that are unattainable solely using growth parameters. Two examples of possible novel radial heterostructures grown on these vertical [100] oriented nanowire facets are presented, demonstrating their potential in future applications

    Modelling of highly extended Gamma-ray emission around the Geminga Pulsar as detected with H.E.S.S

    Full text link
    Geminga is an enigmatic radio-quiet gamma-ray pulsar located at a mere 250 pc distance from Earth. Extended very-high-energy gamma-ray emission around the pulsar has been detected by multiple water Cherenkov detector based instruments. However, the detection of extended TeV gamma-ray emission around the Geminga pulsar has proven challenging for IACTs due to the angular scale exceeding the typical field-of-view. By detailed studies of background estimation techniques and characterising systematic effects, a detection of highly extended TeV gamma-ray emission could be confirmed by the H.E.S.S. IACT array. Building on the previously announced detection, in this contribution we further characterise the emission and apply an electron diffusion model to the combined gamma-ray data from the H.E.S.S. and HAWC experiments, as well as X-ray data from XMM-Newton.Comment: 8 pages, 5 figures. In proceedings of ICRC2023 (see also arXiv:2304.02631

    Superconductor-Nanowire Devices from Tunneling to the Multichannel Regime: Zero-Bias Oscillations and Magnetoconductance Crossover

    Full text link
    We present transport measurements in superconductor-nanowire devices with a gated constriction forming a quantum point contact. Zero-bias features in tunneling spectroscopy appear at finite magnetic fields, and oscillate in amplitude and split away from zero bias as a function of magnetic field and gate voltage. A crossover in magnetoconductance is observed: Magnetic fields above ~ 0.5 T enhance conductance in the low-conductance (tunneling) regime but suppress conductance in the high-conductance (multichannel) regime. We consider these results in the context of Majorana zero modes as well as alternatives, including Kondo effect and analogs of 0.7 structure in a disordered nanowire.Comment: Supplemental Material here: https://dl.dropbox.com/u/1742676/Churchill_Supplemental.pd

    Correlation-induced conductance suppression at level degeneracy in a quantum dot

    Get PDF
    The large, level-dependent g-factors in an InSb nanowire quantum dot allow for the occurrence of a variety of level crossings in the dot. While we observe the standard conductance enhancement in the Coulomb blockade region for aligned levels with different spins due to the Kondo effect, a vanishing of the conductance is found at the alignment of levels with equal spins. This conductance suppression appears as a canyon cutting through the web of direct tunneling lines and an enclosed Coulomb blockade region. In the center of the Coulomb blockade region, we observe the predicted correlation-induced resonance, which now turns out to be part of a larger scenario. Our findings are supported by numerical and analytical calculations.Comment: 5 pages, 4 figure

    Formation of Long Single Quantum Dots in High Quality InSb Nanowires Grown by Molecular Beam Epitaxy

    Full text link
    We report on realization and transport spectroscopy study of single quantum dots (QDs) made from InSb nanowires grown by molecular beam epitaxy (MBE). The nanowires employed are 50-80 nm in diameter and the QDs are defined in the nanowires between the source and drain contacts on a Si/SiO2_2 substrate. We show that highly tunable QD devices can be realized with the MBE-grown InSb nanowires and the gate-to-dot capacitance extracted in the many-electron regimes is scaled linearly with the longitudinal dot size, demonstrating that the devices are of single InSb nanowire QDs even with a longitudinal size of ~700 nm. In the few-electron regime, the quantum levels in the QDs are resolved and the Land\'e g-factors extracted for the quantum levels from the magnetotransport measurements are found to be strongly level-dependent and fluctuated in a range of 18-48. A spin-orbit coupling strength is extracted from the magnetic field evolutions of a ground state and its neighboring excited state in an InSb nanowire QD and is on the order of ~300 μ\mueV. Our results establish that the MBE-grown InSb nanowires are of high crystal quality and are promising for the use in constructing novel quantum devices, such as entangled spin qubits, one-dimensional Wigner crystals and topological quantum computing devices.Comment: 19 pages, 5 figure

    A new look at the cosmic ray positron fraction

    Get PDF
    The positron fraction in cosmic rays was found to be a steadily increasing in function of energy, above ∼\sim 10 GeV. This behaviour contradicts standard astrophysical mechanisms, in which positrons are secondary particles, produced in the interactions of primary cosmic rays during the propagation in the interstellar medium. The observed anomaly in the positron fraction triggered a lot of excitement, as it could be interpreted as an indirect signature of the presence of dark matter species in the Galaxy. Alternatively, it could be produced by nearby astrophysical sources, such as pulsars. Both hypotheses are probed in this work in light of the latest AMS-02 positron fraction measurements. The transport of the primary and secondary positrons in the Galaxy is described using a semi-analytic two-zone model. MicrOMEGAs is used to model the positron flux generated by dark matter species. The description of the positron fraction from astrophysical sources is based on the pulsar observations included in the ATNF catalogue. We find that the mass of the favoured dark matter candidates is always larger than 500 GeV. The only dark matter species that fulfils the numerous gamma ray and cosmic microwave background bounds is a particle annihilating into four leptons through a light scalar or vector mediator, with a mixture of tau (75%) and electron (25%) channels, and a mass between 0.5 and 1 TeV. The positron anomaly can also be explained by a single astrophysical source and a list of five pulsars from the ATNF catalogue is given. Those results are obtained with the cosmic ray transport parameters that best fit the B/C ratio. Uncertainties in the propagation parameters turn out to be very significant. In the WIMP annihilation cross section to mass plane for instance, they overshadow the error contours derived from the positron data.Comment: 20 pages, 16 figures, accepted for publication in A&A, corresponds to published versio

    Analysis of strain and stacking faults in single nanowires using Bragg coherent diffraction imaging

    Full text link
    Coherent diffraction imaging (CDI) on Bragg reflections is a promising technique for the study of three-dimensional (3D) composition and strain fields in nanostructures, which can be recovered directly from the coherent diffraction data recorded on single objects. In this article we report results obtained for single homogeneous and heterogeneous nanowires with a diameter smaller than 100 nm, for which we used CDI to retrieve information about deformation and faults existing in these wires. The article also discusses the influence of stacking faults, which can create artefacts during the reconstruction of the nanowire shape and deformation.Comment: 18 pages, 6 figures Submitted to New Journal of Physic

    Non-Abelian toplogical superconductors from topological semimetals and related systems under superconducting proximity effect

    Full text link
    Non-Abelian toplogical superconductors are characterized by the existence of {zero-energy} Majorana fermions bound in the quantized vortices. This is a consequence of the nontrivial bulk topology characterized by an {\em odd} Chern number. It is found that in topological semimetals with a single two-bands crossing point all the gapped superconductors are non-Abelian ones. Such a property is generalized to related but more generic systems which will be useful in the search of non-Abelian superconductors and Majorana fermions
    • …
    corecore