21 research outputs found

    El populismo, teoría y práctica. El caso de América Latina.

    Get PDF
    El estudio de los populismos es, sin duda, un tema controvertido. A pesar de ser uno de los términos más usados en el análisis político contemporáneo, no ha sido definido con gran precisión. Debido a su protagonismo en la situación internacional actual parece necesario investigar las diversas propuestas teóricas que han surgido en el siglo XX, desde múltiples campos, con el fin de comprender el porqué del auge de los populismos. A esa aproximación teórica se añade el estudio del triunfo de soluciones de corte populista en América Latina a partir de la década de los treinta. Tras el análisis de las situaciones nacionales de Argentina, Brasil, Ecuador y Perú, el trabajo expone unas reflexiones sobre el panorama actual y el auge de los movimientos populistas en nuestros días

    Implementation of second-tier tests in newborn screening for the detection of vitamin B12 related acquired and genetic disorders: results on 258,637 newborns

    Get PDF
    Homocisteïna; Cribratge de nounats; Deficiència de vitamina B12Homocisteína; Cribado de recién nacidos; Deficiencia de vitamina B12Homocysteine; Newborn screening; Vitamin B12 deficiencyBackground Alteration of vitamin B12 metabolism can be genetic or acquired, and can result in anemia, failure to thrive, developmental regression and even irreversible neurologic damage. Therefore, early diagnosis and intervention is critical. Most of the neonatal cases with acquired vitamin B12 deficiency have been detected by clinical symptoms and only few of them trough NBS programs. We aim to assess the usefulness of the second-tier test: methylmalonic acid (MMA), methylcitric acid (MCA) and homocysteine (Hcys) in our newborn screening program and explore the implications on the detection of cobalamin (vitamin B12) related disorders, both genetic and acquired conditions. Methods A screening strategy using the usual primary markers followed by the analysis of MMA, MCA and Hcys as second tier-test in the first dried blood spot (DBS) was developed and evaluated. Results During the period 2015–2018 a total of 258,637 newborns were screened resulting in 130 newborns with acquired vitamin B12 deficiency (incidence 1:1989), 19 with genetic disorders (incidence 1:13,613) and 13 were false positive. No false negatives were notified. Concerning the second-tier test, the percentage of cases with MMA above the cut-off levels, both for genetic and acquired conditions was very similar (58% and 60%, respectively). Interestingly, the percentage of cases with increased levels of Hcys was higher in acquired conditions than in genetic disorders (87% and 47%, respectively). In contrast, MCA was high only in 5% of the acquired conditions versus in 53% of the genetic disorders, and it was always very high in all patients with propionic acidemia. Conclusions When screening for methylmalonic acidemia and homocystinuria, differential diagnosis with acquired vitamin B12 deficiency should be done. The results of our strategy support the inclusion of this acquired condition in the NBS programs, as it is easily detectable and allows the adoption of corrective measures to avoid the consequences of its deficiency

    Leigh syndrome associated with TRMU gene mutations

    Get PDF
    Insuficiència hepàtica aguda: Síndrome de Leigh; TRMUInsuficiencia hepática aguda; Síndrome de Leigh; TRMUAcute liver failure; Leigh syndrome; TRMUtRNA 5-methylaminomethyl-2-thiouridylate methyltransferase (TRMU) deficiency causes an early onset potentially reversible acute liver failure, so far reported in less than 30 patients. We describe two new unrelated patients with an acute liver failure and a neuroimaging compatible with Leigh syndrome (LS) due to TRMU deficiency, a combination not previously reported. Our report enlarges the phenotypical spectrum of TRMU disease.This work was partially supported by the Spanish Instituto de Salud Carlos III, Fondo de Investigaciones Sanitarias and cofounded with ERDF funds (Grant No. FIS PI15/01428, PI19/01772)

    Leigh Syndrome Associated with TRMU Gene Mutations

    Get PDF
    tRNA 5-methylaminomethyl-2-thiouridylate methyltransferase (TRMU) deficiency causes an early onset potentially reversible acute liver failure, so far reported in less than 30 patients. We describe two new unrelated patients with an acute liver failure and a neuroimaging compatible with Leigh syndrome (LS) due to TRMU deficiency, a combination not previously reported. Our report enlarges the phenotypical spectrum of TRMU diseaseThe Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), is an initiative of the Instituto de Salud Carlos III (Ministerio de Ciencia e Innovacion, Spain). This study was supported by the Agencia de Gestio d'Ajuts Universitaris i de Recerca (AGAUR) (2014: SGR 393) and the CERCA Programme/Generalitat de Catalunya. The present study was supported by the Department de Salut, Generalitat de Catalunya (URDCAT project, SLT002/16/00174

    Leigh syndrome associated with TRMU gene mutations

    Get PDF
    tRNA 5-methylaminomethyl-2-thiouridylate methyltransferase (TRMU) deficiency causes an early onset potentially reversible acute liver failure, so far reported in less than 30 patients. We describe two new unrelated patients with an acute liver failure and a neuroimaging compatible with Leigh syndrome (LS) due to TRMU deficiency, a combination not previously reported. Our report enlarges the phenotypical spectrum of TRMU disease

    Multicentric Standardization of Protocols for the Diagnosis of Human Mitochondrial Respiratory Chain Defects

    Full text link
    The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Institutional Review Board of each institution: IBC U737 (C0000128), HCL U722 (HCB2017/0808), 12O U723 (CEI:18/487), VH U701 (PR(IR)63/2016) and UPO U729 (C.I. 2768-N-21)The quantification of mitochondrial respiratory chain (MRC) enzymatic activities is essential for diagnosis of a wide range of mitochondrial diseases, ranging from inherited defects to secondary dysfunctions. MRC lesion is frequently linked to extended cell damage through the generation of proton leak or oxidative stress, threatening organ viability and patient health. However, the intrinsic challenge of a methodological setup and the high variability in measuring MRC enzymatic activities represents a major obstacle for comparative analysis amongst institutions. To improve experimental and statistical robustness, seven Spanish centers with extensive experience in mitochondrial research and diagnosis joined to standardize common protocols for spectrophotometric MRC enzymatic measurements using minimum amounts of sample. Herein, we present the detailed protocols, reference ranges, tips and troubleshooting methods for experimental and analytical setups in different sample preparations and tissues that will allow an international standardization of common protocols for the diagnosis of MRC defects. Methodological standardization is a crucial step to obtain comparable reference ranges and international standards for laboratory assays to set the path for further diagnosis and research in the field of mitochondrial diseasesThis work was supported by Instituto de Salud Carlos III (ISCIII), grants FIS PI17/00021, PI17/00359, PI18/00498, PI18/00451, PI18/01374, PI19/01772, PI20/00541, PI21/00229, PI21/00381 and PI21/00935 (ISCIII-FEDER “Cofinanciado por la Unión Europea”), Fundació Privada Cellex, Junta de Andalucía (UPO-1262247) and Ministerio de Ciencia e Innovación (MCINN) grant PID2019-110320RBI00. All participant centers are integrated in the Centro de Investigación Biomédica en Red (CIBER), Sección de Enfermedades Raras (CIBERER, an initiative of ISCIII), which is the founder of this present methodological stud

    Multicentric Standardization of protocols for the diagnosis of human mitochondrial respiratory chain defects

    Full text link
    The quantification of mitochondrial respiratory chain (MRC) enzymatic activities is essential for diagnosis of a wide range of mitochondrial diseases, ranging from inherited defects to secondary dysfunctions. MRC lesion is frequently linked to extended cell damage through the generation of proton leak or oxidative stress, threatening organ viability and patient health. However, the intrinsic challenge of a methodological setup and the high variability in measuring MRC enzymatic activities represents a major obstacle for comparative analysis amongst institutions. To improve experimental and statistical robustness, seven Spanish centers with extensive experience in mitochondrial research and diagnosis joined to standardize common protocols for spectrophotometric MRC enzymatic measurements using minimum amounts of sample. Herein, we present the detailed protocols, reference ranges, tips and troubleshooting methods for experimental and analytical setups in different sample preparations and tissues that will allow an international standardization of common protocols for the diagnosis of MRC defects. Methodological standardization is a crucial step to obtain comparable reference ranges and international standards for laboratory assays to set the path for further diagnosis and research in the field of mitochondrial diseases

    Lysosomal lipid alterations caused by glucocerebrosidase deficiency promote lysosomal dysfunction, chaperone-mediated-autophagy deficiency, and alpha-synuclein pathology

    Get PDF
    Mutations in the GBA gene that encodes the lysosomal enzyme β-glucocerebrosidase (GCase) are a major genetic risk factor for Parkinson's disease (PD). In this study, we generated a set of differentiated and stable human dopaminergic cell lines that express the two most prevalent GBA mutations as well as GBA knockout cell lines as a in vitro disease modeling system to study the relationship between mutant GBA and the abnormal accumulation of α-synuclein. We performed a deep analysis of the consequences triggered by the presence of mutant GBA protein and the loss of GCase activity in different cellular compartments, focusing primarily on the lysosomal compartment, and analyzed in detail the lysosomal activity, composition, and integrity. The loss of GCase activity generates extensive lysosomal dysfunction, promoting the loss of activity of other lysosomal enzymes, affecting lysosomal membrane stability, promoting intralysosomal pH changes, and favoring the intralysosomal accumulation of sphingolipids and cholesterol. These local events, occurring only at a subcellular level, lead to an impairment of autophagy pathways, particularly chaperone-mediated autophagy, the main α-synuclein degradative pathway. The findings of this study highlighted the role of lysosomal function and lipid metabolism in PD and allowed us to describe a molecular mechanism to understand how mutations in GBA can contribute to an abnormal accumulation of different α-synuclein neurotoxic species in PD pathology.The authors wish to thank Dr. Arango (VHIR) for the PX461 vector and all the Vila lab members for their support. This work was supported by the Fondo de Investigación Sanitaria-Instituto de Salud Carlos III (Spain)-FEDER (PI17/00496 and PI20/00728), the Michael J. Fox Foundation, the Silverstein Foundation (MJFF 16182), and the BBVA Foundation (NanoERT). M.M. was supported by an FPU doctoral fellowship (FPU18/05595) from MINECO (Spain); J.R. was supported by a PERIS fellowship (Generalitat de Catalunya); E.P. was supported by a VHIR doctoral fellowship (VHIR, Barcelona).Peer reviewe

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore